当前位置: 首页>>代码示例>>Python>>正文


Python numpy.fliplr方法代码示例

本文整理汇总了Python中numpy.fliplr方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.fliplr方法的具体用法?Python numpy.fliplr怎么用?Python numpy.fliplr使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.fliplr方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: load_data

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def load_data(self, domain, batch_size=1, is_testing=False):
        data_type = "train%s" % domain if not is_testing else "test%s" % domain
        path = glob('./datasets/%s/%s/*' % (self.dataset_name, data_type))

        batch_images = np.random.choice(path, size=batch_size)

        imgs = []
        for img_path in batch_images:
            img = self.imread(img_path)
            if not is_testing:
                img = scipy.misc.imresize(img, self.img_res)

                if np.random.random() > 0.5:
                    img = np.fliplr(img)
            else:
                img = scipy.misc.imresize(img, self.img_res)
            imgs.append(img)

        imgs = np.array(imgs)/127.5 - 1.

        return imgs 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:23,代码来源:data_loader.py

示例2: prox_soft_symmetry

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def prox_soft_symmetry(X, step, strength=1):
    """Soft version of symmetry
    Using a `strength` that varies from 0 to 1,
    with 0 meaning no symmetry enforced at all and
    1  being completely symmetric, the user can customize
    the level of symmetry required for a component
    """
    pads = [[0, 0], [0, 0]]
    slices = [slice(None), slice(None)]
    if X.shape[0] % 2 == 0:
        pads[0][1] = 1
        slices[0] = slice(0, X.shape[0])
    if X.shape[1] % 2 == 0:
        pads[1][1] = 1
        slices[1] = slice(0, X.shape[1])

    X = fft.fast_zero_pad(X, pads)
    Xs = np.fliplr(np.flipud(X))
    X = 0.5 * strength * (X + Xs) + (1 - strength) * X
    return X[tuple(slices)] 
开发者ID:pmelchior,项目名称:scarlet,代码行数:22,代码来源:operator.py

示例3: save_movie_to_frame

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def save_movie_to_frame(images, filename, idx=0, cmap='Blues'):
    # Collect to single image
    image = movie_to_frame(images[idx])

    # Flip it
    # image = np.fliplr(image)
    # image = np.flipud(image)

    f = plt.figure(figsize=[12, 12])
    plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1)

    plt.axis('image')
    plt.xticks([])
    plt.yticks([])
    plt.savefig(filename, format='png', bbox_inches='tight', dpi=80)
    plt.close(f) 
开发者ID:simonkamronn,项目名称:kvae,代码行数:18,代码来源:movie.py

示例4: rotation_matrix

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def rotation_matrix(self):
        ''' Return rotation matrix between array indices and mm

        Note that we swap the two columns of the 'ImageOrientPatient'
        when we create the rotation matrix.  This is takes into account
        the slightly odd ij transpose construction of the DICOM
        orientation fields - see doc/theory/dicom_orientaiton.rst.
        '''
        iop = self.image_orient_patient
        s_norm = self.slice_normal
        if None in (iop, s_norm):
            return None
        R = np.eye(3)
        # np.fliplr(iop) gives matrix F in
        # doc/theory/dicom_orientation.rst The fliplr accounts for the
        # fact that the first column in ``iop`` refers to changes in
        # column index, and the second to changes in row index.
        R[:,:2] = np.fliplr(iop)
        R[:,2] = s_norm
        # check this is in fact a rotation matrix
        assert np.allclose(np.eye(3),
                           np.dot(R, R.T),
                           atol=1e-6)
        return R 
开发者ID:ME-ICA,项目名称:me-ica,代码行数:26,代码来源:dicomwrappers.py

示例5: test_flip_axis

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def test_flip_axis():
    a = np.arange(24).reshape((2,3,4))
    assert_array_equal(
        flip_axis(a),
        np.flipud(a))
    assert_array_equal(
        flip_axis(a, axis=0),
        np.flipud(a))
    assert_array_equal(
        flip_axis(a, axis=1),
        np.fliplr(a))
    # check accepts array-like
    assert_array_equal(
        flip_axis(a.tolist(), axis=0),
        np.flipud(a))
    # third dimension
    b = a.transpose()
    b = np.flipud(b)
    b = b.transpose()
    assert_array_equal(flip_axis(a, axis=2), b) 
开发者ID:ME-ICA,项目名称:me-ica,代码行数:22,代码来源:test_orientations.py

示例6: decompose_projection_matrix

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def decompose_projection_matrix(P, return_t=True):
  if P.shape[0] != 3 or P.shape[1] != 4:
    raise Exception('P has to be 3x4')
  M = P[:, :3]
  C = -np.linalg.inv(M) @ P[:, 3:]

  R,K = np.linalg.qr(np.flipud(M).T)
  K = np.flipud(K.T)
  K = np.fliplr(K)
  R = np.flipud(R.T)

  T = np.diag(np.sign(np.diag(K)))
  K = K @ T
  R = T @ R

  if np.linalg.det(R) < 0:
    R *= -1

  K /= K[2,2]
  if return_t:
    return K, R, cameracenter_to_translation(R, C)
  else:
    return K, R, C 
开发者ID:autonomousvision,项目名称:connecting_the_dots,代码行数:25,代码来源:geometry.py

示例7: get_symmetric_densepose

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def get_symmetric_densepose(self, I, U, V, x, y, Mask):
        # This is a function to get the mirror symmetric UV labels.
        Labels_sym = np.zeros(I.shape)
        U_sym = np.zeros(U.shape)
        V_sym = np.zeros(V.shape)
        for i in (range(24)):
            if i + 1 in I:
                Labels_sym[I == (i + 1)] = self.Index_Symmetry_List[i]
                jj = np.where(I == (i + 1))
                U_loc = (U[jj] * 255).astype(np.int64)
                V_loc = (V[jj] * 255).astype(np.int64)
                V_sym[jj] = self.UV_symmetry_transformations['V_transforms'][0, i][V_loc, U_loc]
                U_sym[jj] = self.UV_symmetry_transformations['U_transforms'][0, i][V_loc, U_loc]
        Mask_flip = np.fliplr(Mask)
        Mask_flipped = np.zeros(Mask.shape)

        for i in (range(14)):
            Mask_flipped[Mask_flip == (i + 1)] = self.SemanticMaskSymmetries[i + 1]
        [y_max, x_max] = Mask_flip.shape
        y_sym = y
        x_sym = x_max - x

        return Labels_sym, U_sym, V_sym, x_sym, y_sym, Mask_flipped 
开发者ID:soeaver,项目名称:Parsing-R-CNN,代码行数:25,代码来源:densepose_methods.py

示例8: transform

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def transform(self, images):
        if self._aug_flag:
            transformed_images =\
                np.zeros([images.shape[0], self._imsize, self._imsize, 3])
            ori_size = images.shape[1]
            for i in range(images.shape[0]):
                h1 = np.floor((ori_size - self._imsize) * np.random.random())
                w1 = np.floor((ori_size - self._imsize) * np.random.random())
                cropped_image =\
                    images[i][w1: w1 + self._imsize, h1: h1 + self._imsize, :]
                if random.random() > 0.5:
                    transformed_images[i] = np.fliplr(cropped_image)
                else:
                    transformed_images[i] = cropped_image
            return transformed_images
        else:
            return images 
开发者ID:hanzhanggit,项目名称:StackGAN,代码行数:19,代码来源:datasets.py

示例9: __init__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def __init__(self):
		nest.ResetKernel()
		nest.SetKernelStatus({"local_num_threads" : 1, "resolution" : p.time_resolution})
		self.spike_generators_l = nest.Create("poisson_generator", p.resolution[0]//2*p.resolution[1], params=p.poisson_params)
		self.spike_generators_r = nest.Create("poisson_generator", p.resolution[0]//2*p.resolution[1], params=p.poisson_params)
		self.neuron_l = nest.Create("iaf_psc_alpha", params=p.iaf_params)
		self.neuron_r = nest.Create("iaf_psc_alpha", params=p.iaf_params)
		self.spike_detector_l = nest.Create("spike_detector", params={"withtime": True})
		self.spike_detector_r = nest.Create("spike_detector", params={"withtime": True})
		self.multimeter_l = nest.Create("multimeter", params={"withtime":True, "record_from":["V_m"]})
		self.multimeter_r = nest.Create("multimeter", params={"withtime":True, "record_from":["V_m"]})
		weights_l = np.fliplr(p.weights_l.T).reshape(p.weights_l.size)
		weights_r = np.fliplr(p.weights_r.T).reshape(p.weights_r.size)
		for i in range(weights_l.size):
			syn_dict = {"model": "static_synapse", 
						"weight": weights_l[i]}
			nest.Connect([self.spike_generators_l[i]], self.neuron_l, syn_spec=syn_dict)
		for i in range(weights_r.size):
			syn_dict = {"model": "static_synapse", 
						"weight": weights_r[i]}
			nest.Connect([self.spike_generators_r[i]], self.neuron_r, syn_spec=syn_dict)
		nest.Connect(self.neuron_l, self.spike_detector_l)
		nest.Connect(self.neuron_r, self.spike_detector_r)
		nest.Connect(self.multimeter_l, self.neuron_l)
		nest.Connect(self.multimeter_r, self.neuron_r) 
开发者ID:clamesc,项目名称:Training-Neural-Networks-for-Event-Based-End-to-End-Robot-Control,代码行数:27,代码来源:network.py

示例10: center_crop

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def center_crop(x, crop_h, crop_w=None, resize_w=64):

    if crop_w is None:
        crop_w = crop_h
    h, w = x.shape[:2]
    j = int(round((h - crop_h)/2.))
    i = int(round((w - crop_w)/2.))

    rate = np.random.uniform(0, 1, size=1)

    if rate < 0.5:
        x = np.fliplr(x)

    #first crop tp 178x178 and resize to 128x128
    return scipy.misc.imresize(x[20:218-20, 0: 178], [resize_w, resize_w])

    #Another cropped method

    # return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w],
    #                            [resize_w, resize_w]) 
开发者ID:zhangqianhui,项目名称:Residual_Image_Learning_GAN,代码行数:22,代码来源:utils.py

示例11: load_image_array

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def load_image_array(image_file, image_size):
	img = skimage.io.imread(image_file)
	# GRAYSCALE
	if len(img.shape) == 2:
		img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8')
		img_new[:,:,0] = img
		img_new[:,:,1] = img
		img_new[:,:,2] = img
		img = img_new

	img_resized = skimage.transform.resize(img, (image_size, image_size))

	# FLIP HORIZONTAL WIRH A PROBABILITY 0.5
	if random.random() > 0.5:
		img_resized = np.fliplr(img_resized)
	
	
	return img_resized.astype('float32') 
开发者ID:paarthneekhara,项目名称:text-to-image,代码行数:20,代码来源:image_processing.py

示例12: update

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def update(self):
        if self.inky_colour is None:
            raise RuntimeError("You must specify which colour of Inky pHAT you're using: inkyphat.set_colour('red', 'black' or 'yellow')")

        self._display_init()

        x1, x2 = self.update_x1, self.update_x2
        y1, y2 = self.update_y1, self.update_y2

        region = self.buffer[y1:y2, x1:x2]

        if self.v_flip:
            region = numpy.fliplr(region)

        if self.h_flip:
            region = numpy.flipud(region)

        buf_red = numpy.packbits(numpy.where(region == RED, 1, 0)).tolist()
        if self.inky_version == 1:
            buf_black = numpy.packbits(numpy.where(region == 0, 0, 1)).tolist()
        else:
            buf_black = numpy.packbits(numpy.where(region == BLACK, 0, 1)).tolist()

        self._display_update(buf_black, buf_red)
        self._display_fini() 
开发者ID:pimoroni,项目名称:inky-phat,代码行数:27,代码来源:inky212x104.py

示例13: __flip

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def __flip(self, image, landmarks, run_prob=0.5):
        """
        Do image flop. Only for horizontal
        Args:
            image: a numpy type
            landmarks: face landmarks with format [(x1, y1), (x2, y2), ...]
            run_prob: probability to do this operate. 0.0-1.0
        Return:
            an image and landmarks will be returned
        Raises:
            Unsupport count of landmarks
        """
        if np.random.rand() < run_prob:
            return image, landmarks
        image = np.fliplr(image)
        landmarks[:, 0] = image.shape[1] - landmarks[:, 0]
        landmarks = LandmarkHelper.flip(landmarks, landmarks.shape[0])
        return image, landmarks 
开发者ID:junhwanjang,项目名称:face_landmark_dnn,代码行数:20,代码来源:landmark_augment.py

示例14: step

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def step(self, amt=1):
        d = self._ws_thread.get_frame()
        d = d.reshape(WS_FRAME_HEIGHT, WS_FRAME_WIDTH)
        if self.mirror:
            d = np.fliplr(d)

        d = rebin(d, (self.height, self.width)).astype(np.uint16)

        self.shader.render(d) 
开发者ID:ManiacalLabs,项目名称:BiblioPixelAnimations,代码行数:11,代码来源:kimotion.py

示例15: _recalls

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fliplr [as 别名]
def _recalls(all_ious, proposal_nums, thrs):

    img_num = all_ious.shape[0]
    total_gt_num = sum([ious.shape[0] for ious in all_ious])

    _ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32)
    for k, proposal_num in enumerate(proposal_nums):
        tmp_ious = np.zeros(0)
        for i in range(img_num):
            ious = all_ious[i][:, :proposal_num].copy()
            gt_ious = np.zeros((ious.shape[0]))
            if ious.size == 0:
                tmp_ious = np.hstack((tmp_ious, gt_ious))
                continue
            for j in range(ious.shape[0]):
                gt_max_overlaps = ious.argmax(axis=1)
                max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps]
                gt_idx = max_ious.argmax()
                gt_ious[j] = max_ious[gt_idx]
                box_idx = gt_max_overlaps[gt_idx]
                ious[gt_idx, :] = -1
                ious[:, box_idx] = -1
            tmp_ious = np.hstack((tmp_ious, gt_ious))
        _ious[k, :] = tmp_ious

    _ious = np.fliplr(np.sort(_ious, axis=1))
    recalls = np.zeros((proposal_nums.size, thrs.size))
    for i, thr in enumerate(thrs):
        recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num)

    return recalls 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:33,代码来源:recall.py


注:本文中的numpy.fliplr方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。