本文整理汇总了Python中numpy.fft.ifft2方法的典型用法代码示例。如果您正苦于以下问题:Python fft.ifft2方法的具体用法?Python fft.ifft2怎么用?Python fft.ifft2使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.fft
的用法示例。
在下文中一共展示了fft.ifft2方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: wiener_dft
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def wiener_dft(im: np.ndarray, sigma: float) -> np.ndarray:
"""
Adaptive Wiener filter applied to the 2D FFT of the image
:param im: multidimensional array
:param sigma: estimated noise power
:return: filtered version of input im
"""
noise_var = sigma ** 2
h, w = im.shape
im_noise_fft = fft2(im)
im_noise_fft_mag = np.abs(im_noise_fft / (h * w) ** .5)
im_noise_fft_mag_noise = wiener_adaptive(im_noise_fft_mag, noise_var)
zeros_y, zeros_x = np.nonzero(im_noise_fft_mag == 0)
im_noise_fft_mag[zeros_y, zeros_x] = 1
im_noise_fft_mag_noise[zeros_y, zeros_x] = 0
im_noise_fft_filt = im_noise_fft * im_noise_fft_mag_noise / im_noise_fft_mag
im_noise_filt = np.real(ifft2(im_noise_fft_filt))
return im_noise_filt.astype(np.float32)
示例2: crosscorr_2d
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def crosscorr_2d(k1: np.ndarray, k2: np.ndarray) -> np.ndarray:
"""
PRNU 2D cross-correlation
:param k1: 2D matrix of size (h1,w1)
:param k2: 2D matrix of size (h2,w2)
:return: 2D matrix of size (max(h1,h2),max(w1,w2))
"""
assert (k1.ndim == 2)
assert (k2.ndim == 2)
max_height = max(k1.shape[0], k2.shape[0])
max_width = max(k1.shape[1], k2.shape[1])
k1 -= k1.flatten().mean()
k2 -= k2.flatten().mean()
k1 = np.pad(k1, [(0, max_height - k1.shape[0]), (0, max_width - k1.shape[1])], mode='constant', constant_values=0)
k2 = np.pad(k2, [(0, max_height - k2.shape[0]), (0, max_width - k2.shape[1])], mode='constant', constant_values=0)
k1_fft = fft2(k1, )
k2_fft = fft2(np.rot90(k2, 2), )
return np.real(ifft2(k1_fft * k2_fft)).astype(np.float32)
示例3: get_numpy
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def get_numpy(shape, fftn_shape=None, **kwargs):
import numpy.fft as numpy_fft
f = {
"fft2": numpy_fft.fft2,
"ifft2": numpy_fft.ifft2,
"rfft2": numpy_fft.rfft2,
"irfft2": lambda X: numpy_fft.irfft2(X, s=shape),
"fftshift": numpy_fft.fftshift,
"ifftshift": numpy_fft.ifftshift,
"fftfreq": numpy_fft.fftfreq,
}
if fftn_shape is not None:
f["fftn"] = numpy_fft.fftn
fft = SimpleNamespace(**f)
return fft
示例4: get_scipy
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def get_scipy(shape, fftn_shape=None, **kwargs):
import numpy.fft as numpy_fft
import scipy.fftpack as scipy_fft
# use numpy implementation of rfft2/irfft2 because they have not been
# implemented in scipy.fftpack
f = {
"fft2": scipy_fft.fft2,
"ifft2": scipy_fft.ifft2,
"rfft2": numpy_fft.rfft2,
"irfft2": lambda X: numpy_fft.irfft2(X, s=shape),
"fftshift": scipy_fft.fftshift,
"ifftshift": scipy_fft.ifftshift,
"fftfreq": scipy_fft.fftfreq,
}
if fftn_shape is not None:
f["fftn"] = scipy_fft.fftn
fft = SimpleNamespace(**f)
return fft
示例5: sheardec2D
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def sheardec2D(X, shearletsystem):
"""Shearlet Decomposition function."""
coeffs = np.zeros(shearletsystem.shearlets.shape, dtype=complex)
Xfreq = fftshift(fft2(ifftshift(X)))
for i in range(shearletsystem.nShearlets):
coeffs[:, :, i] = fftshift(ifft2(ifftshift(Xfreq * np.conj(
shearletsystem.shearlets[:, :, i]))))
return coeffs.real
示例6: synthesize
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def synthesize(f_hat, axes=(0, 1)):
"""
:param f_hat:
:param axis:
:return:
"""
size = np.prod([f_hat.shape[ax] for ax in axes])
f_hat = ifftshift(f_hat * size, axes=axes)
f = ifft2(f_hat, axes=axes)
return f
示例7: ifftd
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def ifftd(I, dims=None):
# Compute fft
if dims is None:
X = ifftn(I)
elif dims == 2:
X = ifft2(I, axes=(0, 1))
else:
X = ifftn(I, axes=tuple(range(dims)))
return X
示例8: xcorr
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def xcorr(imageA, imageB):
FimageA = _fft.fft2(imageA)
CFimageB = _np.conj(_fft.fft2(imageB))
return _fft.fftshift(
_np.real(_fft.ifft2((FimageA * CFimageB)))
) / _np.sqrt(imageA.size)
示例9: fft_convolve2d
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def fft_convolve2d(x,y):
""" 2D convolution, using FFT"""
fr = fft2(x)
fr2 = fft2(y)
cc = np.real(ifft2(fr*fr2))
cc = fftshift(cc)
return cc
示例10: fft_convolve2d
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def fft_convolve2d(x,y):
"""
2D convolution, using FFT
"""
fr = fft2(x)
fr2 = fft2(np.flipud(np.fliplr(y)))
m,n = fr.shape
cc = np.real(ifft2(fr*fr2))
cc = np.roll(cc, - int(m / 2) + 1, axis=0)
cc = np.roll(cc, - int(n / 2) + 1, axis=1)
return cc
示例11: shearrec2D
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def shearrec2D(coeffs, shearletsystem):
"""Shearlet Recovery function."""
X = np.zeros(coeffs.shape[:2], dtype=complex)
for i in range(shearletsystem.nShearlets):
X = X + fftshift(fft2(
ifftshift(coeffs[:, :, i]))) * shearletsystem.shearlets[:, :, i]
return (fftshift(ifft2(ifftshift((
X / shearletsystem.dualFrameWeights))))).real
示例12: sheardecadjoint2D
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def sheardecadjoint2D(coeffs, shearletsystem):
"""Shearlet Decomposition adjoint function."""
X = np.zeros(coeffs.shape[:2], dtype=complex)
for i in range(shearletsystem.nShearlets):
X = X + fftshift(fft2(
ifftshift(coeffs[:, :, i]))) * np.conj(
shearletsystem.shearlets[:, :, i])
return (fftshift(ifft2(ifftshift(
X / shearletsystem.dualFrameWeights)))).real
示例13: shearrecadjoint2D
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def shearrecadjoint2D(X, shearletsystem):
"""Shearlet Recovery adjoint function."""
coeffs = np.zeros(shearletsystem.shearlets.shape, dtype=complex)
Xfreq = fftshift(fft2(ifftshift(X)))
for i in range(shearletsystem.nShearlets):
coeffs[:, :, i] = fftshift(ifft2(ifftshift(
Xfreq * shearletsystem.shearlets[:, :, i])))
return coeffs.real
示例14: gs
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def gs(idata,itera=10, ia=None):
"""Gerchberg-Saxton algorithm to calculate DOEs
Calculates the phase distribution in a object plane to obtain an
specific amplitude distribution in the target plane. It uses a
FFT to calculate the field propagation.
The wavefront at the DOE plane is assumed as a plane wave.
**ARGUMENTS:**
========== ========================================================
idata numpy array containing the target amplitude distribution
itera Maximum number of iterations
ia Illumination amplitude at the hologram plane if not given
it is assumed to be a constant amplitude with a value
of 1. If given it should be an array with the same shape
of idata
========== ========================================================
"""
if ia==None:
inpa=ones(idata.shape)
else:
inpa=ia
assert idata.shape==inpa.shape, "ia and idata must have the same dimensions"
fdata=fftshift(fft2(ifftshift(idata)))
e=1000
ea=1000
for i in range (itera):
fdata=exp(1.j*angle(fdata))*inpa
rdata=ifftshift(ifft2(fftshift(fdata)))
e= (abs(rdata)-idata).std()
if e>ea:
break
ea=e
rdata=exp(1.j*angle(rdata))*(idata)
fdata=fftshift(fft2(ifftshift(rdata)))
fdata=exp(1.j*angle(fdata))
return fdata*inpa
示例15: gs_mod
# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft2 [as 别名]
def gs_mod(idata,itera=10,osize=256):
"""Modiffied Gerchberg-Saxton algorithm to calculate DOEs
Calculates the phase distribution in a object plane to obtain an
specific amplitude distribution in the target plane. It uses a
FFT to calculate the field propagation.
The wavefront at the DOE plane is assumed as a plane wave.
This algorithm leaves a window around the image plane to allow the
noise to move there. It only optimises the center of the image.
**ARGUMENTS:**
========== ======================================================
idata numpy array containing the target amplitude distribution
itera Maximum number of iterations
osize Size of the center of the image to be optimized
It should be smaller than the image itself.
========== ======================================================
"""
M,N=idata.shape
cut=osize//2
zone=zeros_like(idata)
zone[M/2-cut:M/2+cut,N/2-cut:N/2+cut]=1
zone=zone.astype(bool)
mask=exp(2.j*pi*random(idata.shape))
mask[zone]=0
#~ imshow(abs(mask)),colorbar()
fdata=fftshift(fft2(ifftshift(idata+mask))) #Nota, colocar esta mascara es muy importante, por que si no no converge tan rapido
e=1000
ea=1000
for i in range (itera):
fdata=exp(1.j*angle(fdata))
rdata=ifftshift(ifft2(fftshift(fdata)))
#~ e= (abs(rdata[zone])-idata[zone]).std()
#~ if e>ea:
#~
#~ break
ea=e
rdata[zone]=exp(1.j*angle(rdata[zone]))*(idata[zone])
fdata=fftshift(fft2(ifftshift(rdata)))
fdata=exp(1.j*angle(fdata))
return fdata