当前位置: 首页>>代码示例>>Python>>正文


Python fft.ifft方法代码示例

本文整理汇总了Python中numpy.fft.ifft方法的典型用法代码示例。如果您正苦于以下问题:Python fft.ifft方法的具体用法?Python fft.ifft怎么用?Python fft.ifft使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.fft的用法示例。


在下文中一共展示了fft.ifft方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: cconv

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def cconv(a, b):
    """
    Circular convolution of vectors

    Computes the circular convolution of two vectors a and b via their
    fast fourier transforms

    a \ast b = \mathcal{F}^{-1}(\mathcal{F}(a) \odot \mathcal{F}(b))

    Parameter
    ---------
    a: real valued array (shape N)
    b: real valued array (shape N)

    Returns
    -------
    c: real valued array (shape N), representing the circular
       convolution of a and b
    """
    return ifft(fft(a) * fft(b)).real 
开发者ID:mnick,项目名称:scikit-kge,代码行数:22,代码来源:util.py

示例2: cconv

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def cconv(a, b):
	"""
	Circular convolution of vectors

	Computes the circular convolution of two vectors a and b via their
	fast fourier transforms

	a \ast b = \mathcal{F}^{-1}(\mathcal{F}(a) \odot \mathcal{F}(b))

	Parameter
	---------
	a: real valued array (shape N)
	b: real valued array (shape N)

	Returns
	-------
	c: real valued array (shape N), representing the circular
	   convolution of a and b
	"""
	return ifft(fft(a) * fft(b)).real 
开发者ID:malllabiisc,项目名称:cesi,代码行数:22,代码来源:util.py

示例3: _dhtm

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def _dhtm(mag):
    """Compute the modified 1D discrete Hilbert transform

    Parameters
    ----------
    mag : ndarray
        The magnitude spectrum. Should be 1D with an even length, and
        preferably a fast length for FFT/IFFT.
    """
    # Adapted based on code by Niranjan Damera-Venkata,
    # Brian L. Evans and Shawn R. McCaslin (see refs for `minimum_phase`)
    sig = np.zeros(len(mag))
    # Leave Nyquist and DC at 0, knowing np.abs(fftfreq(N)[midpt]) == 0.5
    midpt = len(mag) // 2
    sig[1:midpt] = 1
    sig[midpt+1:] = -1
    # eventually if we want to support complex filters, we will need a
    # np.abs() on the mag inside the log, and should remove the .real
    recon = ifft(mag * np.exp(fft(sig * ifft(np.log(mag))))).real
    return recon 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:22,代码来源:fir_filter_design.py

示例4: filter

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def filter(self, x):
        '''
        filter a timeseries with the ARMA filter

        padding with zero is missing, in example I needed the padding to get
        initial conditions identical to direct filter

        Initial filtered observations differ from filter2 and signal.lfilter, but
        at end they are the same.

        See Also
        --------
        tsa.filters.fftconvolve

        '''
        n = x.shape[0]
        if n == self.fftarma:
            fftarma = self.fftarma
        else:
            fftarma = self.fftma(n) / self.fftar(n)
        tmpfft = fftarma * fft.fft(x)
        return fft.ifft(tmpfft) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:24,代码来源:fftarma.py

示例5: invpowerspd

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def invpowerspd(self, n):
        '''autocovariance from spectral density

        scaling is correct, but n needs to be large for numerical accuracy
        maybe padding with zero in fft would be faster
        without slicing it returns 2-sided autocovariance with fftshift

        >>> ArmaFft([1, -0.5], [1., 0.4], 40).invpowerspd(2**8)[:10]
        array([ 2.08    ,  1.44    ,  0.72    ,  0.36    ,  0.18    ,  0.09    ,
                0.045   ,  0.0225  ,  0.01125 ,  0.005625])
        >>> ArmaFft([1, -0.5], [1., 0.4], 40).acovf(10)
        array([ 2.08    ,  1.44    ,  0.72    ,  0.36    ,  0.18    ,  0.09    ,
                0.045   ,  0.0225  ,  0.01125 ,  0.005625])
        '''
        hw = self.fftarma(n)
        return np.real_if_close(fft.ifft(hw*hw.conj()), tol=200)[:n] 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:18,代码来源:fftarma.py

示例6: synthesize

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def synthesize(f_hat, axis=0):
        """
        Compute the inverse / synthesis Fourier transform of the function f_hat : Z -> C.
        The function f_hat(n) is sampled at points in a limited range -floor(N/2) <= n <= ceil(N/2) - 1

        This function returns
        f[k] = f(theta_k) = sum_{n=-floor(N/2)}^{ceil(N/2)-1} f_hat(n) exp(i n theta_k)
        where theta_k = 2 pi k / N
        for k = 0, ..., N - 1

        :param f_hat:
        :param axis:
        :return:
        """

        f_hat = ifftshift(f_hat * f_hat.shape[axis], axes=axis)
        f = ifft(f_hat, axis=axis)
        return f 
开发者ID:AMLab-Amsterdam,项目名称:lie_learn,代码行数:20,代码来源:T1FFT.py

示例7: xcorr

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def xcorr(x1,x2,Nlags):
    """
    r12, k = xcorr(x1,x2,Nlags), r12 and k are ndarray's
    Compute the energy normalized cross correlation between the sequences
    x1 and x2. If x1 = x2 the cross correlation is the autocorrelation.
    The number of lags sets how many lags to return centered about zero
    """
    K = 2*(int(np.floor(len(x1)/2)))
    X1 = fft.fft(x1[:K])
    X2 = fft.fft(x2[:K])
    E1 = sum(abs(x1[:K])**2)
    E2 = sum(abs(x2[:K])**2)
    r12 = np.fft.ifft(X1*np.conj(X2))/np.sqrt(E1*E2)
    k = np.arange(K) - int(np.floor(K/2))
    r12 = np.fft.fftshift(r12)
    idx = np.nonzero(np.ravel(abs(k) <= Nlags))
    return r12[idx], k[idx] 
开发者ID:mwickert,项目名称:scikit-dsp-comm,代码行数:19,代码来源:digitalcom.py

示例8: ccorr

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def ccorr(a, b):
    """
    Circular correlation of vectors

    Computes the circular correlation of two vectors a and b via their
    fast fourier transforms

    a \ast b = \mathcal{F}^{-1}(\overline{\mathcal{F}(a)} \odot \mathcal{F}(b))

    Parameter
    ---------
    a: real valued array (shape N)
    b: real valued array (shape N)

    Returns
    -------
    c: real valued array (shape N), representing the circular
       correlation of a and b
    """

    return ifft(np.conj(fft(a)) * fft(b)).real 
开发者ID:mnick,项目名称:scikit-kge,代码行数:23,代码来源:util.py

示例9: ccorr

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def ccorr(a, b):
	"""
	Circular correlation of vectors

	Computes the circular correlation of two vectors a and b via their
	fast fourier transforms

	a \ast b = \mathcal{F}^{-1}(\overline{\mathcal{F}(a)} \odot \mathcal{F}(b))

	Parameter
	---------
	a: real valued array (shape N)
	b: real valued array (shape N)

	Returns
	-------
	c: real valued array (shape N), representing the circular
	   correlation of a and b
	"""

	return ifft(np.conj(fft(a)) * fft(b)).real 
开发者ID:malllabiisc,项目名称:cesi,代码行数:23,代码来源:util.py

示例10: _frft2

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def _frft2(x, alpha):
    assert x.ndim == 2, "x must be a 2 dimensional array"
    m, n = x.shape
    # TODO please remove this confusing comment. Is it 'm' or 'm-1' ?
    # TODO If 'p = m', more code cleaning is easy to do.
    p = m  # m-1 # deveria incrementarse el sigiente pow
    y = zeros((2 * p, n), dtype=complex)
    z = zeros((2 * p, n), dtype=complex)

    j = indices(z.shape)[0]
    y[(p - m) // 2 : (p + m) // 2, :] = x * exp(
        -1.0j * pi * (j[0:m] ** 2) * float(alpha) / m
    )

    z[0:m, :] = exp(1.0j * pi * (j[0:m] ** 2) * float(alpha) / m)
    z[-m:, :] = exp(1.0j * pi * ((j[-m:] - 2 * p) ** 2) * float(alpha) / m)

    d = exp(-1.0j * pi * j ** 2 ** float(alpha) / m) * ifft(
        fft(y, axis=0) * fft(z, axis=0), axis=0
    )

    return d[0:m]


# TODO better docstring 
开发者ID:cihologramas,项目名称:pyoptools,代码行数:27,代码来源:frft.py

示例11: _ncc_c

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def _ncc_c(x, y):
    """
    >>> _ncc_c([1,2,3,4], [1,2,3,4])
    array([ 0.13333333,  0.36666667,  0.66666667,  1.        ,  0.66666667,
            0.36666667,  0.13333333])
    >>> _ncc_c([1,1,1], [1,1,1])
    array([ 0.33333333,  0.66666667,  1.        ,  0.66666667,  0.33333333])
    >>> _ncc_c([1,2,3], [-1,-1,-1])
    array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
    """
    den = np.array(norm(x) * norm(y))
    den[den == 0] = np.Inf

    x_len = len(x)
    fft_size = 1 << (2*x_len-1).bit_length()
    cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
    cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
    return np.real(cc) / den 
开发者ID:johnpaparrizos,项目名称:kshape,代码行数:20,代码来源:core.py

示例12: csr_convolution

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def csr_convolution(a, b):
    P = len(a)
    Q = len(b)
    L = P + Q - 1
    K = 2 ** nextpow2(L)
    a_pad = np.pad(a, (0, K - P), 'constant', constant_values=(0))
    b_pad = np.pad(b, (0, K - Q), 'constant', constant_values=(0))
    c = ifft(fft(a_pad)*fft(b_pad))
    c = c[0:L-1].real
    return c 
开发者ID:ocelot-collab,项目名称:ocelot,代码行数:12,代码来源:csr.py

示例13: bench_random

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def bench_random(self):
        from numpy.fft import ifft as numpy_ifft
        print()
        print('       Inverse Fast Fourier Transform')
        print('===============================================')
        print('      |     real input    |    complex input   ')
        print('-----------------------------------------------')
        print(' size |  scipy  |  numpy  |  scipy  |  numpy  ')
        print('-----------------------------------------------')
        for size,repeat in [(100,7000),(1000,2000),
                            (256,10000),
                            (512,10000),
                            (1024,1000),
                            (2048,1000),
                            (2048*2,500),
                            (2048*4,500),
                            ]:
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            for x in [random([size]).astype(double),
                      random([size]).astype(cdouble)+random([size]).astype(cdouble)*1j
                      ]:
                if size > 500:
                    y = ifft(x)
                else:
                    y = direct_idft(x)
                assert_array_almost_equal(ifft(x),y)
                print('|%8.2f' % measure('ifft(x)',repeat), end=' ')
                sys.stdout.flush()

                assert_array_almost_equal(numpy_ifft(x),y)
                print('|%8.2f' % measure('numpy_ifft(x)',repeat), end=' ')
                sys.stdout.flush()

            print(' (secs for %s calls)' % (repeat))
        sys.stdout.flush() 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:39,代码来源:bench_basic.py

示例14: test_djbfft

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def test_djbfft(self):
        from numpy.fft import ifft as numpy_ifft
        for i in range(2,14):
            n = 2**i
            x = list(range(n))
            x1 = zeros((n,),dtype=cdouble)
            x1[0] = x[0]
            for k in range(1, n//2):
                x1[k] = x[2*k-1]+1j*x[2*k]
                x1[n-k] = x[2*k-1]-1j*x[2*k]
            x1[n//2] = x[-1]
            y1 = numpy_ifft(x1)
            y = fftpack.drfft(x,direction=-1)
            assert_array_almost_equal(y,y1) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:16,代码来源:test_basic.py

示例15: test_fourier_gaussian_real01

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import ifft [as 别名]
def test_fourier_gaussian_real01(self):
        for shape in [(32, 16), (31, 15)]:
            for type in [numpy.float32, numpy.float64]:
                a = numpy.zeros(shape, type)
                a[0, 0] = 1.0
                a = fft.rfft(a, shape[0], 0)
                a = fft.fft(a, shape[1], 1)
                a = ndimage.fourier_gaussian(a, [5.0, 2.5],
                                                       shape[0], 0)
                a = fft.ifft(a, shape[1], 1)
                a = fft.irfft(a, shape[0], 0)
                assert_almost_equal(ndimage.sum(a), 1) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:14,代码来源:test_ndimage.py


注:本文中的numpy.fft.ifft方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。