当前位置: 首页>>代码示例>>Python>>正文


Python fft.fftshift方法代码示例

本文整理汇总了Python中numpy.fft.fftshift方法的典型用法代码示例。如果您正苦于以下问题:Python fft.fftshift方法的具体用法?Python fft.fftshift怎么用?Python fft.fftshift使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.fft的用法示例。


在下文中一共展示了fft.fftshift方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ptf

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def ptf(self):
		"""
		Phase transfer function
		"""
		PSF = self.__psfcaculator__()
		PTF = __fftshift__(__fft2__(PSF))
		PTF = __np__.angle(PTF)
		b = 400
		R = (200)**2
		for i in range(b):
			for j in range(b):
				if (i-b/2)**2+(j-b/2)**2>R:
					PTF[i][j] = 0
		__plt__.imshow(abs(PTF),cmap=__cm__.rainbow)
		__plt__.colorbar()
		__plt__.show()
		return 0 
开发者ID:Sterncat,项目名称:opticspy,代码行数:19,代码来源:zernike.py

示例2: ift2

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def ift2(G, delta_f, FFT=None):
    """
    Wrapper for inverse fourier transform

    Parameters:
        G: data to transform
        delta_f: pixel seperation
        FFT (FFT object, optional): An accelerated FFT object
    """

    N = G.shape[0]

    if FFT:
        g = numpy.fft.fftshift(FFT(numpy.fft.fftshift(G))) * (N * delta_f) ** 2
    else:
        g = fft.ifftshift(fft.ifft2(fft.fftshift(G))) * (N * delta_f) ** 2

    return g 
开发者ID:AOtools,项目名称:aotools,代码行数:20,代码来源:phasescreen.py

示例3: impute_aligned_vols

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def impute_aligned_vols(t, v, vm, normalize=None):
    assert (normalize is not None)
    if normalize:
        v = ((v - v.mean()) / v.std())
        if (t is not None):
            t = ((t - t.mean()) / t.std())
    if (t is None):
        return v
    t_f = NF.fftshift(NF.fftn(t))
    v_f = NF.fftshift(NF.fftn(v))
    v_f[(vm == 0)] = t_f[(vm == 0)]
    v_f_if = N.real(NF.ifftn(NF.ifftshift(v_f)))
    if normalize:
        v_f_if = ((v_f_if - v_f_if.mean()) / v_f_if.std())
    if N.all(N.isfinite(v_f_if)):
        return v_f_if
    else:
        print('warning: imputation failed')
        return v 
开发者ID:xulabs,项目名称:aitom,代码行数:21,代码来源:util.py

示例4: average

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def average(dj, mask_count_threshold):
    vol_sum = None
    mask_sum = None
    for d in dj:
        v = IF.read_mrc_vol(d['subtomogram'])
        if (not N.all(N.isfinite(v))):
            raise Exception('error loading', d['subtomogram'])
        vm = IF.read_mrc_vol(d['mask'])
        v_r = GR.rotate_pad_mean(v, angle=d['angle'], loc_r=d['loc'])
        assert N.all(N.isfinite(v_r))
        vm_r = GR.rotate_mask(vm, angle=d['angle'])
        assert N.all(N.isfinite(vm_r))
        if (vol_sum is None):
            vol_sum = N.zeros(v_r.shape, dtype=N.float64, order='F')
        vol_sum += v_r
        if (mask_sum is None):
            mask_sum = N.zeros(vm_r.shape, dtype=N.float64, order='F')
        mask_sum += vm_r
    ind = (mask_sum >= mask_count_threshold)
    vol_sum_fft = NF.fftshift(NF.fftn(vol_sum))
    avg = N.zeros(vol_sum_fft.shape, dtype=N.complex)
    avg[ind] = (vol_sum_fft[ind] / mask_sum[ind])
    avg = N.real(NF.ifftn(NF.ifftshift(avg)))
    return {'v': avg, 'm': (mask_sum / len(dj)), } 
开发者ID:xulabs,项目名称:aitom,代码行数:26,代码来源:aligned_refine.py

示例5: test_definition

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def test_definition(self):
        x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
        y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
        assert_array_almost_equal(fft.fftshift(x), y)
        assert_array_almost_equal(fft.ifftshift(y), x)
        x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
        y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
        assert_array_almost_equal(fft.fftshift(x), y)
        assert_array_almost_equal(fft.ifftshift(y), x) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:11,代码来源:test_helper.py

示例6: test_inverse

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def test_inverse(self):
        for n in [1, 4, 9, 100, 211]:
            x = np.random.random((n,))
            assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:6,代码来源:test_helper.py

示例7: test_axes_keyword

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def test_axes_keyword(self):
        freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
        shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
        assert_array_almost_equal(fft.fftshift(freqs, axes=0),
                                  fft.fftshift(freqs, axes=(0,)))
        assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
        assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
                                  fft.ifftshift(shifted, axes=(0,)))

        assert_array_almost_equal(fft.fftshift(freqs), shifted)
        assert_array_almost_equal(fft.ifftshift(shifted), freqs) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:14,代码来源:test_helper.py

示例8: test_axes_keyword

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def test_axes_keyword(self):
        freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
        shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
        assert_array_almost_equal(fft.fftshift(freqs, axes=0),
                fft.fftshift(freqs, axes=(0,)))
        assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
        assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
                fft.ifftshift(shifted, axes=(0,))) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:11,代码来源:test_helper.py

示例9: test_axes_keyword

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def test_axes_keyword(self):
        freqs = [[ 0,  1,  2], [ 3,  4, -4], [-3, -2, -1]]
        shifted = [[-1, -3, -2], [ 2,  0,  1], [-4,  3,  4]]
        assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
        assert_array_almost_equal(fft.fftshift(freqs, axes=0),
                fft.fftshift(freqs, axes=(0,)))
        assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
        assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
                fft.ifftshift(shifted, axes=(0,))) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:11,代码来源:test_helper.py

示例10: analyze

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def analyze(f, axis=0):
        """
        Compute the Fourier Transform of the discretely sampled function f : T^1 -> C.

        Let f : T^1 -> C be a band-limited function on the circle.
        The samples f(theta_k) correspond to points on a regular grid on the circle, as returned by spaces.T1.linspace:
        theta_k = 2 pi k / N
        for k = 0, ..., N - 1

        This function computes
        \hat{f}_n = (1/N) \sum_{k=0}^{N-1} f(theta_k) e^{-i n theta_k}
        which, if f has band-limit less than N, is equal to:
        \hat{f}_n = \int_0^{2pi} f(theta) e^{-i n theta} dtheta / 2pi,
                  = <f(theta), e^{i n theta}>
        where dtheta / 2pi is the normalized Haar measure on T^1, and < , > denotes the inner product on Hilbert space,
        with respect to which this transform is unitary.

        The range of frequencies n is -floor(N/2) <= n <= ceil(N/2) - 1

        :param f:
        :param axis:
        :return:
        """
        # The numpy FFT returns coefficients in a different order than we want them,
        # and using a different normalization.
        fhat = fft(f, axis=axis)
        fhat = fftshift(fhat, axes=axis)
        return fhat / f.shape[axis] 
开发者ID:AMLab-Amsterdam,项目名称:lie_learn,代码行数:30,代码来源:T1FFT.py

示例11: analyze_naive

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def analyze_naive(f):
        f_hat = np.zeros_like(f)
        for n in range(f.size):
            for k in range(f.size):
                theta_k = k * 2 * np.pi / f.size
                f_hat[n] += f[k] * np.exp(-1j * n * theta_k)
        return fftshift(f_hat / f.size, axes=0) 
开发者ID:AMLab-Amsterdam,项目名称:lie_learn,代码行数:9,代码来源:T1FFT.py

示例12: analyze

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def analyze(f, axes=(0, 1)):
        """
        Compute the Fourier Transform of the discretely sampled function f : T^2 -> C.

        Let f : T^2 -> C be a band-limited function on the torus.
        The samples f(theta_k, phi_l) correspond to points on a regular grid on the circle,
        as returned by spaces.T1.linspace:
        theta_k = phi_k = 2 pi k / N
        for k = 0, ..., N - 1 and l = 0, ..., N - 1

        This function computes
        \hat{f}_n = (1/N) \sum_{k=0}^{N-1} f(theta_k) e^{-i n theta_k}
        which, if f has band-limit less than N, is equal to:
        \hat{f}_n = \int_0^{2pi} f(theta) e^{-i n theta} dtheta / 2pi,
                  = <f(theta), e^{i n theta}>
        where dtheta / 2pi is the normalized Haar measure on T^1, and < , > denotes the inner product on Hilbert space,
        with respect to which this transform is unitary.

        The range of frequencies n is -floor(N/2) <= n <= ceil(N/2) - 1

        :param f:
        :param axis:
        :return:
        """
        # The numpy FFT returns coefficients in a different order than we want them,
        # and using a different normalization.
        f_hat = fft2(f, axes=axes)
        f_hat = fftshift(f_hat, axes=axes)
        size = np.prod([f.shape[ax] for ax in axes])
        return f_hat / size 
开发者ID:AMLab-Amsterdam,项目名称:lie_learn,代码行数:32,代码来源:T2FFT.py

示例13: __psfcaculator__

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def __psfcaculator__(self,lambda_1=632*10**(-9),z=0.1):
		"""
		height: Exit pupil height
		width: Exit pupil width
		z: Distance from exit pupil to image plane
		"""
		a = self.__a__
		b = __sqrt__(1-a**2)
		l1 = 100;
		x1 = __np__.linspace(-a, a, l1)
		y1 = __np__.linspace(-b, b, l1)
		[X,Y] = __np__.meshgrid(x1,y1)
		Z = __zernikecartesian__(self.__coefficients__,a,X,Y)
		d = 400 # background
		A = __np__.zeros([d,d])
		A[d//2-l1//2+1:d//2+l1//2+1,d//2-l1//2+1:d//2+l1//2+1] = Z
		# fig = __plt__.figure()
		# __plt__.imshow(A)
		# __plt__.colorbar()
		# __plt__.show()
		abbe = __np__.exp(-1j*2*__np__.pi*A)
		for i in range(len(abbe)):
			for j in range(len(abbe)):
				if abbe[i][j]==1:
					abbe[i][j]=0
		PSF = __fftshift__(__fft2__(__fftshift__(abbe)))**2
		PSF = PSF/PSF.max()
		return PSF 
开发者ID:Sterncat,项目名称:opticspy,代码行数:30,代码来源:zernike_rec.py

示例14: mtf

# 需要导入模块: from numpy import fft [as 别名]
# 或者: from numpy.fft import fftshift [as 别名]
def mtf(self,lambda_1=632*10**(-9),z=0.1,matrix = False):
		"""
		Modulate Transfer function
		"""
		PSF = self.__psfcaculator__(lambda_1=lambda_1,z=z)
		MTF = __fftshift__(__fft2__(PSF))
		MTF = MTF/MTF.max()
		fig = __plt__.figure(figsize=(9, 6), dpi=80)
		__plt__.imshow(abs(MTF),cmap=__cm__.bwr)
		__plt__.colorbar()
		__plt__.show()
		if matrix == True:
			return MTF
		else:
			return 0 
开发者ID:Sterncat,项目名称:opticspy,代码行数:17,代码来源:zernike_rec.py


注:本文中的numpy.fft.fftshift方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。