本文整理汇总了Python中numpy.diff方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.diff方法的具体用法?Python numpy.diff怎么用?Python numpy.diff使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.diff方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _bounds_from_array
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def _bounds_from_array(arr, dim_name, bounds_name):
"""Get the bounds of an array given its center values.
E.g. if lat-lon grid center lat/lon values are known, but not the
bounds of each grid box. The algorithm assumes that the bounds
are simply halfway between each pair of center values.
"""
# TODO: don't assume needed dimension is in axis=0
# TODO: refactor to get rid of repetitive code
spacing = arr.diff(dim_name).values
lower = xr.DataArray(np.empty_like(arr), dims=arr.dims,
coords=arr.coords)
lower.values[:-1] = arr.values[:-1] - 0.5*spacing
lower.values[-1] = arr.values[-1] - 0.5*spacing[-1]
upper = xr.DataArray(np.empty_like(arr), dims=arr.dims,
coords=arr.coords)
upper.values[:-1] = arr.values[:-1] + 0.5*spacing
upper.values[-1] = arr.values[-1] + 0.5*spacing[-1]
bounds = xr.concat([lower, upper], dim='bounds')
return bounds.T
示例2: get_stages_from_blocks
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def get_stages_from_blocks(self, widths):
"""Gets widths/stage_blocks of network at each stage.
Args:
widths (list[int]): Width in each stage.
Returns:
tuple(list): width and depth of each stage
"""
width_diff = [
width != width_prev
for width, width_prev in zip(widths + [0], [0] + widths)
]
stage_widths = [
width for width, diff in zip(widths, width_diff[:-1]) if diff
]
stage_blocks = np.diff([
depth for depth, diff in zip(range(len(width_diff)), width_diff)
if diff
]).tolist()
return stage_widths, stage_blocks
示例3: splrep
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def splrep(coordinates, t, order, weights, smoothing, periodic):
from scipy import interpolate
(x,y) = coordinates
# we need to skip anything where t[i] and t[i+1] are too close
wh = np.where(np.isclose(np.diff(t), 0))[0]
if len(wh) > 0:
(t,x,y) = [np.array(u) for u in (t,x,y)]
ii = np.arange(len(t))
for i in reversed(wh):
ii[i+1:-1] = ii[i+2:]
for u in (t,x,y):
u[i] = np.mean(u[i:i+2])
ii = ii[:-len(wh)]
(t,x,y) = [u[ii] for u in (t,x,y)]
xtck = interpolate.splrep(t, x, k=order, s=smoothing, w=weights, per=periodic)
ytck = interpolate.splrep(t, y, k=order, s=smoothing, w=weights, per=periodic)
return tuple([tuple([pimms.imm_array(u) for u in tck])
for tck in (xtck,ytck)])
示例4: subcurve
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def subcurve(self, t0, t1):
'''
curve.subcurve(t0, t1) yields a curve-spline object that is equivalent to the given
curve but that extends from curve(t0) to curve(t1) only.
'''
# if t1 is less than t0, then we want to actually do this in reverse...
if t1 == t0: raise ValueError('Cannot take subcurve of a point')
if t1 < t0:
tt = self.curve_length()
return self.reverse().subcurve(tt - t0, tt - t1)
idx = [ii for (ii,t) in enumerate(self.t) if t0 < t and t < t1]
pt0 = self(t0)
pt1 = self(t1)
coords = np.vstack([[pt0], self.coordinates.T[idx], [pt1]])
ts = np.concatenate([[t0], self.t[idx], [t1]])
dists = None if self.distances is None else np.diff(ts)
return CurveSpline(
coords.T,
order=self.order,
smoothing=self.smoothing,
periodic=False,
distances=dists,
meta_data=self.meta_data)
示例5: test_cmag
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def test_cmag(self):
'''
test_cmag() ensures that the neuropythy.vision cortical magnification function is working.
'''
import neuropythy.vision as vis
logging.info('neuropythy: Testing areal cortical magnification...')
dset = ny.data['benson_winawer_2018']
sub = dset.subjects['S1202']
hem = [sub.lh, sub.rh][np.random.randint(2)]
cm = vis.areal_cmag(hem.midgray_surface, 'prf_',
mask=('inf-prf_visual_area', 1),
weight='prf_variance_explained')
# cmag should get smaller in general
ths = np.arange(0, 2*np.pi, np.pi/3)
es = [0.5, 1, 2, 4]
x = np.diff([np.mean(cm(e*np.cos(ths), e*np.sin(ths))) for e in es])
self.assertTrue((x < 0).all())
示例6: mask_to_rle
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def mask_to_rle(img, mask_value=255, transpose=True):
img = np.int32(img)
if transpose:
img = img.T
img = img.flatten()
img[img == mask_value] = 1
pimg = np.pad(img, 1, mode='constant')
diff = np.diff(pimg)
starts = np.where(diff == 1)[0]
ends = np.where(diff == -1)[0]
rle = []
previous_end = 0
for start, end in zip(starts, ends):
relative_start = start - previous_end
length = end - start
previous_end = end
rle.append(str(relative_start))
rle.append(str(length))
if len(rle) == 0:
return "-1"
return " ".join(rle)
示例7: test_gen_sma
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def test_gen_sma(self):
r"""Test gen_sma method.
Approach: Ensures the output is set, of the correct type, length, and units.
Check that they are in the correct range and follow the distribution.
"""
plan_pop = self.fixture
n = 10000
sma = plan_pop.gen_sma(n)
# ensure the units are length
self.assertEqual((sma/u.km).decompose().unit, u.dimensionless_unscaled)
# sma > 0
self.assertTrue(np.all(sma.value >= 0))
# sma >= arange[0], sma <= arange[1]
self.assertTrue(np.all(sma - plan_pop.arange[0] >= 0))
self.assertTrue(np.all(plan_pop.arange[1] - sma >= 0))
h = np.histogram(sma.to('AU').value,100,density=True)
hx = np.diff(h[1])/2.+h[1][:-1]
hp = plan_pop.dist_sma(hx)
chi2 = scipy.stats.chisquare(h[0],hp)
self.assertGreaterEqual(chi2[1],0.95)
示例8: test_gen_plan_params
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def test_gen_plan_params(self):
r"""Test generated planet parameters:
Expected: all 1 R_E, all p = 0.67, e = 0, and uniform a in arange
"""
obj = EarthTwinHabZone1(**self.spec)
x = 10000
a, e, p, Rp = obj.gen_plan_params(x)
assert(np.all(e == 0))
assert(np.all(p == 0.367))
assert(np.all(Rp == 1.0*u.R_earth))
h = np.histogram(a.to('AU').value,100,density=True)
chi2 = scipy.stats.chisquare(h[0],[1.0/np.diff(obj.arange.to('AU').value)[0]]*len(h[0]))
self.assertGreater(chi2[1], 0.95)
示例9: test_gen_plan_params
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def test_gen_plan_params(self):
r"""Test generated planet parameters:
Expected: all 1 R_E, all p = 0.67, e = 0, and uniform a,e in arange,erange
"""
obj = EarthTwinHabZone2(constrainOrbits=False,erange=[0.1,0.5],**self.spec)
x = 10000
a, e, p, Rp = obj.gen_plan_params(x)
assert(np.all(p == 0.367))
assert(np.all(Rp == 1.0*u.R_earth))
for param,param_range in zip([a.value,e],[obj.arange.value,obj.erange]):
h = np.histogram(param,100,density=True)
chi2 = scipy.stats.chisquare(h[0],[1.0/np.diff(param_range)[0]]*len(h[0]))
self.assertGreater(chi2[1], 0.95)
示例10: test_simpSample_trivial
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def test_simpSample_trivial(self):
""" Test simple rejection sampler with trivial inputs
Test method: set up sampling with equal upper and lower bounds
"""
ulim = [0,1]
ufun = lambda x: 1.0/np.diff(ulim)
n = 10000
for mod in self.mods:
print('Testing trivial input for sampler: %s'%mod.__name__)
sampler = mod(ufun,0.5,0.5)
sample = sampler(n)
self.assertEqual(len(sample),n,'Sampler %s does not return all same value'%mod.__name__)
self.assertTrue(np.all(sample == 0.5),'Sampler %s does not return all values at 0.5'%mod.__name__)
示例11: _ecg_rsa_cycles
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def _ecg_rsa_cycles(signals):
"""Extract respiratory cycles."""
inspiration_onsets = np.intersect1d(
np.where(signals["RSP_Phase"] == 1)[0], np.where(signals["RSP_Phase_Completion"] == 0)[0], assume_unique=True
)
expiration_onsets = np.intersect1d(
np.where(signals["RSP_Phase"] == 0)[0], np.where(signals["RSP_Phase_Completion"] == 0)[0], assume_unique=True
)
cycles_length = np.diff(inspiration_onsets)
return {
"RSP_Inspiration_Onsets": inspiration_onsets,
"RSP_Expiration_Onsets": expiration_onsets,
"RSP_Cycles_Length": cycles_length,
}
示例12: _ecg_findpeaks_pantompkins
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def _ecg_findpeaks_pantompkins(signal, sampling_rate=1000):
"""From https://github.com/berndporr/py-ecg-detectors/
- Jiapu Pan and Willis J. Tompkins. A Real-Time QRS Detection Algorithm.
In: IEEE Transactions on Biomedical Engineering BME-32.3 (1985), pp. 230–236.
"""
diff = np.diff(signal)
squared = diff * diff
N = int(0.12 * sampling_rate)
mwa = _ecg_findpeaks_MWA(squared, N)
mwa[: int(0.2 * sampling_rate)] = 0
mwa_peaks = _ecg_findpeaks_peakdetect(mwa, sampling_rate)
mwa_peaks = np.array(mwa_peaks, dtype="int")
return mwa_peaks
# =============================================================================
# Hamilton (2002)
# =============================================================================
示例13: _rsp_findpeaks_biosppy
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def _rsp_findpeaks_biosppy(rsp_cleaned, sampling_rate):
extrema = _rsp_findpeaks_extrema(rsp_cleaned)
extrema, amplitudes = _rsp_findpeaks_outliers(rsp_cleaned, extrema, amplitude_min=0)
peaks, troughs = _rsp_findpeaks_sanitize(extrema, amplitudes)
# Apply minimum period outlier-criterion (exclude inter-breath-intervals
# that produce breathing rate larger than 35 breaths per minute.
outlier_idcs = np.where((np.diff(peaks) / sampling_rate) < 1.7)[0]
peaks = np.delete(peaks, outlier_idcs)
troughs = np.delete(troughs, outlier_idcs)
info = {"RSP_Peaks": peaks, "RSP_Troughs": troughs}
return info
示例14: _eog_clean_kong1998
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def _eog_clean_kong1998(eog_signal, sampling_rate=1000):
"""Kong, X., & Wilson, G.
F. (1998). A new EOG-based eyeblink detection algorithm. Behavior Research Methods, Instruments, & Computers,
30(4), 713-719.
"""
# The order E should be less than half of the expected eyeblink duration. For example, if
# the expected blink duration is 200 msec (10 samples with a sampling rate of 50 Hz), the
# order E should be less than five samples.
eroded = scipy.ndimage.grey_erosion(eog_signal, size=int((0.2 / 2) * sampling_rate))
# a "low-noise" Lanczos differentiation filter introduced in Hamming (1989) is employed.
# Frequently, a first order differentiation filter is sufficient and has the familiar
# form of symmetric difference:
# w[k] = 0.5 * (y[k + 1] - y[k - 1])
diff = eroded - np.concatenate([[0], 0.5 * np.diff(eroded)])
# To reduce the effects of noise, characterized by small fluctuations around zero, a
# median filter is also used with the order of the median filter denoted as M.
# The median filter acts like a mean filter except that it preserves the sharp edges ofthe
# input. The order M should be less than a quarter ofthe expected eyeblink duration.
clean = scipy.ndimage.median_filter(diff, size=int((0.2 / 4) * sampling_rate))
return clean
示例15: _hrv_get_rri
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import diff [as 别名]
def _hrv_get_rri(peaks=None, sampling_rate=1000, interpolate=False, **kwargs):
rri = np.diff(peaks) / sampling_rate * 1000
if interpolate is False:
return rri
else:
# Minimum sampling rate for interpolation
if sampling_rate < 10:
sampling_rate = 10
# Compute length of interpolated heart period signal at requested sampling rate.
desired_length = int(np.rint(peaks[-1] / sampling_rate * sampling_rate))
rri = signal_interpolate(
peaks[1:], # Skip first peak since it has no corresponding element in heart_period
rri,
x_new=np.arange(desired_length),
**kwargs
)
return rri, sampling_rate