本文整理汇总了Python中numpy.corrcoef方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.corrcoef方法的具体用法?Python numpy.corrcoef怎么用?Python numpy.corrcoef使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.corrcoef方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def update(self, labels, preds):
"""Updates the internal evaluation result.
Parameters
----------
labels : list of `NDArray`
The labels of the data.
preds : list of `NDArray`
Predicted values.
"""
labels, preds = check_label_shapes(labels, preds, True)
for label, pred in zip(labels, preds):
check_label_shapes(label, pred, False, True)
label = label.asnumpy()
pred = pred.asnumpy()
self.sum_metric += numpy.corrcoef(pred.ravel(), label.ravel())[0, 1]
self.num_inst += 1
示例2: _calc_score
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def _calc_score(self, X):
if isinstance(self.criterion, str):
if self.criterion == "maxmin":
D = cdist(X, X)
np.fill_diagonal(D, np.inf)
return np.min(D)
elif self.criterion == "correlation":
M = np.corrcoef(X.T, rowvar=True)
return -np.sum(np.tril(M, -1) ** 2)
else:
raise Exception("Unknown criterion.")
elif callable(self.criterion):
return self.criterion(X)
else:
raise Exception("Either provide a str or a function as a criterion!")
示例3: test_2d_with_missing
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def test_2d_with_missing(self):
# Test corrcoef on 2D variable w/ missing value
x = self.data
x[-1] = masked
x = x.reshape(3, 4)
test = corrcoef(x)
control = np.corrcoef(x)
assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
with suppress_warnings() as sup:
sup.filter(DeprecationWarning, "bias and ddof have no effect")
# ddof and bias have no or negligible effect on the function
assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
control[:-1, :-1])
assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
control[:-1, :-1])
assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
control[:-1, :-1])
示例4: get_corr_func
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def get_corr_func(method):
if method in ['kendall', 'spearman']:
from scipy.stats import kendalltau, spearmanr
elif callable(method):
return method
def _pearson(a, b):
return np.corrcoef(a, b)[0, 1]
def _kendall(a, b):
rs = kendalltau(a, b)
if isinstance(rs, tuple):
return rs[0]
return rs
def _spearman(a, b):
return spearmanr(a, b)[0]
_cor_methods = {
'pearson': _pearson,
'kendall': _kendall,
'spearman': _spearman
}
return _cor_methods[method]
示例5: X_corrLoadings
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def X_corrLoadings(self):
"""
Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.
"""
# Creates empty matrix for correlation loadings
arr_XcorrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrP)[0]), float)
# Compute correlation loadings:
# For each PC in score matrix
for PC in range(np.shape(self.arrT)[1]):
PCscores = self.arrT[:, PC]
# For each variable/attribute in original matrix (not meancentered)
for var in range(np.shape(self.arrX)[1]):
origVar = self.arrX[:, var]
corrs = np.corrcoef(PCscores, origVar)
arr_XcorrLoadings[PC, var] = corrs[0,1]
self.arr_XcorrLoadings = np.transpose(arr_XcorrLoadings)
return self.arr_XcorrLoadings
示例6: Y_corrLoadings
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def Y_corrLoadings(self):
"""
Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.
"""
# Creates empty matrix for correlation loadings
arr_YcorrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrQ)[0]), float)
# Compute correlation loadings:
# For each PC in score matrix
for PC in range(np.shape(self.arrT)[1]):
PCscores = self.arrT[:, PC]
# For each variable/attribute in original matrix (not meancentered)
for var in range(np.shape(self.arrY)[1]):
origVar = self.arrY[:, var]
corrs = np.corrcoef(PCscores, origVar)
arr_YcorrLoadings[PC, var] = corrs[0,1]
self.arr_YcorrLoadings = np.transpose(arr_YcorrLoadings)
return self.arr_YcorrLoadings
示例7: X_corrLoadings
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def X_corrLoadings(self):
"""
Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.
"""
# Creates empty matrix for correlation loadings
arr_corrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrP)[0]), float)
# Compute correlation loadings:
# For each component in score matrix
for PC in range(np.shape(self.arrT)[1]):
PCscores = self.arrT[:, PC]
# For each variable/attribute in original matrix (not meancentered)
for var in range(np.shape(self.arrX)[1]):
origVar = self.arrX[:, var]
corrs = np.corrcoef(PCscores, origVar)
arr_corrLoadings[PC, var] = corrs[0,1]
self.arr_corrLoadings = np.transpose(arr_corrLoadings)
return self.arr_corrLoadings
示例8: Y_corrLoadings
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def Y_corrLoadings(self):
"""
Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.
"""
# Creates empty matrix for correlation loadings
arr_YcorrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrQ)[0]), float)
# Compute correlation loadings:
# For each component in score matrix
for PC in range(np.shape(self.arrT)[1]):
PCscores = self.arrT[:, PC]
# For each variable/attribute in original matrix (not meancentered)
for var in range(np.shape(self.arrY)[1]):
origVar = self.arrY[:, var]
corrs = np.corrcoef(PCscores, origVar)
arr_YcorrLoadings[PC, var] = corrs[0,1]
self.arr_YcorrLoadings = np.transpose(arr_YcorrLoadings)
return self.arr_YcorrLoadings
示例9: X_corrLoadings
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def X_corrLoadings(self):
"""
Returns array holding correlation loadings of array X. First column
holds correlation loadings for component 1, second column holds
correlation loadings for component 2, etc.
"""
# Creates empty matrix for correlation loadings
arr_corrLoadings = np.zeros((np.shape(self.arrT)[1],
np.shape(self.arrP)[0]), float)
# Compute correlation loadings:
# For each component in score matrix
for PC in range(np.shape(self.arrT)[1]):
PCscores = self.arrT[:, PC]
# For each variable/attribute in original matrix (not meancentered)
for var in range(np.shape(self.arrX)[1]):
origVar = self.arrX[:, var]
corrs = np.corrcoef(PCscores, origVar)
arr_corrLoadings[PC, var] = corrs[0, 1]
self.arr_corrLoadings = np.transpose(arr_corrLoadings)
return self.arr_corrLoadings
示例10: Y_corrLoadings
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def Y_corrLoadings(self):
"""
Returns an array holding correlation loadings of vector y. Columns
represent components. First column for component 1, second columns for
component 2, etc.
"""
# Creates empty matrix for correlation loadings
arr_ycorrLoadings = np.zeros((np.shape(self.arrT)[1], np.shape(self.arrQ)[0]), float)
# Compute correlation loadings:
# For each PC in score matrix
for PC in range(np.shape(self.arrT)[1]):
PCscores = self.arrT[:, PC]
# For each variable/attribute in original matrix (not meancentered)
for var in range(np.shape(self.vecy)[1]):
origVar = self.vecy[:, var]
corrs = np.corrcoef(PCscores, origVar)
arr_ycorrLoadings[PC, var] = corrs[0,1]
self.arr_ycorrLoadings = np.transpose(arr_ycorrLoadings)
return self.arr_ycorrLoadings
示例11: correlation
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def correlation(obj1, obj2, start=0, end=-1, price_feature='Close'):
if isinstance(obj1, str) or isinstance(obj2, str):
obj1 = log_price_returns(obj1, start, end, price_feature)
obj2 = log_price_returns(obj2, start, end, price_feature)
# simple and rough treatment: assume biz days are the same among the two tickers
if len(obj1)>len(obj2):
obj1 = obj1[len(obj1)-len(obj2):]
else:
obj2 = obj2[len(obj2)-len(obj1):]
start = 0
end = -1
if end < 0:
end += len(obj1)
if start < 0:
start += len(obj1)
return np.corrcoef(obj1[start: (end + 1)], obj2[start: (end + 1)])[0, 1]
示例12: test_2d_w_missing
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def test_2d_w_missing(self):
# Test corrcoef on 2D variable w/ missing value
x = self.data
x[-1] = masked
x = x.reshape(3, 4)
test = corrcoef(x)
control = np.corrcoef(x)
assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
with catch_warn_mae():
warnings.simplefilter("ignore")
# ddof and bias have no or negligible effect on the function
assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1],
control[:-1, :-1])
assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1],
control[:-1, :-1])
assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1],
control[:-1, :-1])
示例13: _lhscorrelate
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def _lhscorrelate(n, samples, iterations):
mincorr = np.inf
# Minimize the components correlation coefficients
for i in range(iterations):
# Generate a random LHS
Hcandidate = _lhsclassic(n, samples)
R = np.corrcoef(Hcandidate)
if np.max(np.abs(R[R != 1])) < mincorr:
mincorr = np.max(np.abs(R - np.eye(R.shape[0])))
print(
'new candidate solution found with max,abs corrcoef = {}'.format(
mincorr))
H = Hcandidate.copy()
return H
################################################################################
示例14: test_atlas_connectivity
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def test_atlas_connectivity(betaseries_file, atlas_file, atlas_lut):
# read in test files
bs_data = nib.load(str(betaseries_file)).get_data()
atlas_lut_df = pd.read_csv(str(atlas_lut), sep='\t')
# expected output
pcorr = np.corrcoef(bs_data.squeeze())
np.fill_diagonal(pcorr, np.NaN)
regions = atlas_lut_df['regions'].values
pcorr_df = pd.DataFrame(pcorr, index=regions, columns=regions)
expected_zcorr_df = pcorr_df.apply(lambda x: (np.log(1 + x) - np.log(1 - x)) * 0.5)
# run instance of AtlasConnectivity
ac = AtlasConnectivity(timeseries_file=str(betaseries_file),
atlas_file=str(atlas_file),
atlas_lut=str(atlas_lut))
res = ac.run()
output_zcorr_df = pd.read_csv(res.outputs.correlation_matrix,
na_values='n/a',
delimiter='\t',
index_col=0)
os.remove(res.outputs.correlation_matrix)
# test equality of the matrices up to 3 decimals
pd.testing.assert_frame_equal(output_zcorr_df, expected_zcorr_df,
check_less_precise=3)
示例15: test_mesh
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import corrcoef [as 别名]
def test_mesh(self):
'''
test_mesh() ensures that many general mesh properties and methods are working.
'''
import neuropythy.geometry as geo
logging.info('neuropythy: Testing meshes and properties...')
# get a random subject's mesh
sub = ny.data['benson_winawer_2018'].subjects['S1204']
hem = sub.hemis[('lh','rh')[np.random.randint(2)]]
msh = hem.white_surface
# few simple things
self.assertEqual(msh.coordinates.shape[0], 3)
self.assertEqual(msh.tess.faces.shape[0], 3)
self.assertEqual(msh.tess.edges.shape[0], 2)
self.assertEqual(msh.vertex_count, msh.coordinates.shape[1])
# face areas and edge lengths should all be non-negative
self.assertGreaterEqual(np.min(msh.face_areas), 0)
self.assertGreaterEqual(np.min(msh.edge_lengths), 0)
# test the properties
self.assertTrue('blerg' in msh.with_prop(blerg=msh.prop('curvature')).properties)
self.assertFalse('curvature' in msh.wout_prop('curvature').properties)
self.assertEqual(msh.properties.row_count, msh.vertex_count)
self.assertLessEqual(np.abs(np.mean(msh.prop('curvature'))), 0.1)
# use the property interface to grab a fancy masked property
v123_areas = msh.property('midgray_surface_area',
mask=('inf-prf_visual_area', (1,2,3)),
null=0)
v123_area = np.sum(v123_areas)
self.assertLessEqual(v123_area, 15000)
self.assertGreaterEqual(v123_area, 500)
(v1_ecc, v1_rad) = msh.property(['prf_eccentricity','prf_radius'],
mask=('inf-prf_visual_area', 1),
weights='prf_variance_explained',
weight_min=0.1,
clipped=0,
null=np.nan)
wh = np.isfinite(v1_ecc) & np.isfinite(v1_rad)
self.assertGreater(np.corrcoef(v1_ecc[wh], v1_rad[wh])[0,0], 0.5)