本文整理汇总了Python中numpy.core.numeric.swapaxes方法的典型用法代码示例。如果您正苦于以下问题:Python numeric.swapaxes方法的具体用法?Python numeric.swapaxes怎么用?Python numeric.swapaxes使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.core.numeric
的用法示例。
在下文中一共展示了numeric.swapaxes方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: swapaxes
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def swapaxes (a, axis1, axis2):
m = getmask(a)
d = masked_array(a).data
if m is nomask:
return masked_array(data=numeric.swapaxes(d, axis1, axis2))
else:
return masked_array(data=numeric.swapaxes(d, axis1, axis2),
mask=numeric.swapaxes(m, axis1, axis2),)
示例2: dot
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def dot(a, b):
"""dot(a,b) returns matrix-multiplication between a and b. The product-sum
is over the last dimension of a and the second-to-last dimension of b.
Masked values are replaced by zeros. See also innerproduct.
"""
return innerproduct(filled(a, 0), numeric.swapaxes(filled(b, 0), -1, -2))
示例3: _swapaxes
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def _swapaxes(self, axis1, axis2):
return MaskedArray(data = self.data.swapaxes(axis1, axis2),
mask = self.mask.swapaxes(axis1, axis2))
示例4: _var
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def _var(self,axis=None,dtype=None, out=None):
if axis is None:
return numeric.asarray(self.compressed()).var()
a = self.swapaxes(axis, 0)
a = a - a.mean(axis=0)
a *= a
a /= a.count(axis=0)
return a.swapaxes(0, axis).sum(axis)
示例5: array_split
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def array_split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis. For an array of length l that should be split
into n sections, it returns l % n sub-arrays of size l//n + 1
and the rest of size l//n.
See Also
--------
split : Split array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]
>>> x = np.arange(7.0)
>>> np.array_split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4.]), array([ 5., 6.])]
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try:
# handle array case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError:
# indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError('number sections must be larger than 0.')
Neach_section, extras = divmod(Ntotal, Nsections)
section_sizes = ([0] +
extras * [Neach_section+1] +
(Nsections-extras) * [Neach_section])
div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary, axis, 0)
for i in range(Nsections):
st = div_points[i]
end = div_points[i + 1]
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
return sub_arys
示例6: array_split
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def array_split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis. For an array of length l that should be split
into n sections, it returns l % n sub-arrays of size l//n + 1
and the rest of size l//n.
See Also
--------
split : Split array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]
>>> x = np.arange(7.0)
>>> np.array_split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4.]), array([ 5., 6.])]
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try:
# handle scalar case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError:
# indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError('number sections must be larger than 0.')
Neach_section, extras = divmod(Ntotal, Nsections)
section_sizes = ([0] +
extras * [Neach_section+1] +
(Nsections-extras) * [Neach_section])
div_points = _nx.array(section_sizes).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary, axis, 0)
for i in range(Nsections):
st = div_points[i]
end = div_points[i + 1]
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
return sub_arys
示例7: array_split
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def array_split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis.
See Also
--------
split : Split array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try:
# handle scalar case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError:
# indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError('number sections must be larger than 0.')
Neach_section, extras = divmod(Ntotal, Nsections)
section_sizes = ([0] +
extras * [Neach_section+1] +
(Nsections-extras) * [Neach_section])
div_points = _nx.array(section_sizes).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary, axis, 0)
for i in range(Nsections):
st = div_points[i]
end = div_points[i + 1]
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
return sub_arys
示例8: array_split
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def array_split(ary,indices_or_sections,axis = 0):
"""
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis.
See Also
--------
split : Split array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try: # handle scalar case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError: #indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError('number sections must be larger than 0.')
Neach_section, extras = divmod(Ntotal, Nsections)
section_sizes = [0] + \
extras * [Neach_section+1] + \
(Nsections-extras) * [Neach_section]
div_points = _nx.array(section_sizes).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary, axis, 0)
for i in range(Nsections):
st = div_points[i]; end = div_points[i+1]
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
# there is a weird issue with array slicing that allows
# 0x10 arrays and other such things. The following kludge is needed
# to get around this issue.
sub_arys = _replace_zero_by_x_arrays(sub_arys)
# end kludge.
return sub_arys
示例9: array_split
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import swapaxes [as 别名]
def array_split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis.
See Also
--------
split : Split array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try:
# handle scalar case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError:
# indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError('number sections must be larger than 0.')
Neach_section, extras = divmod(Ntotal, Nsections)
section_sizes = ([0] +
extras * [Neach_section+1] +
(Nsections-extras) * [Neach_section])
div_points = _nx.array(section_sizes).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary, axis, 0)
for i in range(Nsections):
st = div_points[i]
end = div_points[i + 1]
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
# This "kludge" was introduced here to replace arrays shaped (0, 10)
# or similar with an array shaped (0,).
# There seems no need for this, so give a FutureWarning to remove later.
if sub_arys[-1].size == 0 and sub_arys[-1].ndim != 1:
warnings.warn("in the future np.array_split will retain the shape of "
"arrays with a zero size, instead of replacing them by "
"`array([])`, which always has a shape of (0,).",
FutureWarning)
sub_arys = _replace_zero_by_x_arrays(sub_arys)
return sub_arys