当前位置: 首页>>代码示例>>Python>>正文


Python numeric.normalize_axis_tuple方法代码示例

本文整理汇总了Python中numpy.core.numeric.normalize_axis_tuple方法的典型用法代码示例。如果您正苦于以下问题:Python numeric.normalize_axis_tuple方法的具体用法?Python numeric.normalize_axis_tuple怎么用?Python numeric.normalize_axis_tuple使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.core.numeric的用法示例。


在下文中一共展示了numeric.normalize_axis_tuple方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: compress_nd

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import normalize_axis_tuple [as 别名]
def compress_nd(x, axis=None):
    """Suppress slices from multiple dimensions which contain masked values.

    Parameters
    ----------
    x : array_like, MaskedArray
        The array to operate on. If not a MaskedArray instance (or if no array
        elements are masked, `x` is interpreted as a MaskedArray with `mask`
        set to `nomask`.
    axis : tuple of ints or int, optional
        Which dimensions to suppress slices from can be configured with this
        parameter.
        - If axis is a tuple of ints, those are the axes to suppress slices from.
        - If axis is an int, then that is the only axis to suppress slices from.
        - If axis is None, all axis are selected.

    Returns
    -------
    compress_array : ndarray
        The compressed array.
    """
    x = asarray(x)
    m = getmask(x)
    # Set axis to tuple of ints
    if axis is None:
        axis = tuple(range(x.ndim))
    else:
        axis = normalize_axis_tuple(axis, x.ndim)

    # Nothing is masked: return x
    if m is nomask or not m.any():
        return x._data
    # All is masked: return empty
    if m.all():
        return nxarray([])
    # Filter elements through boolean indexing
    data = x._data
    for ax in axis:
        axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim)))
        data = data[(slice(None),)*ax + (~m.any(axis=axes),)]
    return data 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:43,代码来源:extras.py

示例2: _ureduce

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import normalize_axis_tuple [as 别名]
def _ureduce(a, func, **kwargs):
    """
    Internal Function.
    Call `func` with `a` as first argument swapping the axes to use extended
    axis on functions that don't support it natively.

    Returns result and a.shape with axis dims set to 1.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    func : callable
        Reduction function capable of receiving a single axis argument.
        It is called with `a` as first argument followed by `kwargs`.
    kwargs : keyword arguments
        additional keyword arguments to pass to `func`.

    Returns
    -------
    result : tuple
        Result of func(a, **kwargs) and a.shape with axis dims set to 1
        which can be used to reshape the result to the same shape a ufunc with
        keepdims=True would produce.

    """
    a = np.asanyarray(a)
    axis = kwargs.get('axis', None)
    if axis is not None:
        keepdim = list(a.shape)
        nd = a.ndim
        axis = _nx.normalize_axis_tuple(axis, nd)

        for ax in axis:
            keepdim[ax] = 1

        if len(axis) == 1:
            kwargs['axis'] = axis[0]
        else:
            keep = set(range(nd)) - set(axis)
            nkeep = len(keep)
            # swap axis that should not be reduced to front
            for i, s in enumerate(sorted(keep)):
                a = a.swapaxes(i, s)
            # merge reduced axis
            a = a.reshape(a.shape[:nkeep] + (-1,))
            kwargs['axis'] = -1
        keepdim = tuple(keepdim)
    else:
        keepdim = (1,) * a.ndim

    r = func(a, **kwargs)
    return r, keepdim 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:55,代码来源:function_base.py

示例3: _ureduce

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import normalize_axis_tuple [as 别名]
def _ureduce(a, func, **kwargs):
    """
    Internal Function.
    Call `func` with `a` as first argument swapping the axes to use extended
    axis on functions that don't support it natively.

    Returns result and a.shape with axis dims set to 1.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    func : callable
        Reduction function capable of receiving a single axis argument.
        It is is called with `a` as first argument followed by `kwargs`.
    kwargs : keyword arguments
        additional keyword arguments to pass to `func`.

    Returns
    -------
    result : tuple
        Result of func(a, **kwargs) and a.shape with axis dims set to 1
        which can be used to reshape the result to the same shape a ufunc with
        keepdims=True would produce.

    """
    a = np.asanyarray(a)
    axis = kwargs.get('axis', None)
    if axis is not None:
        keepdim = list(a.shape)
        nd = a.ndim
        axis = _nx.normalize_axis_tuple(axis, nd)

        for ax in axis:
            keepdim[ax] = 1

        if len(axis) == 1:
            kwargs['axis'] = axis[0]
        else:
            keep = set(range(nd)) - set(axis)
            nkeep = len(keep)
            # swap axis that should not be reduced to front
            for i, s in enumerate(sorted(keep)):
                a = a.swapaxes(i, s)
            # merge reduced axis
            a = a.reshape(a.shape[:nkeep] + (-1,))
            kwargs['axis'] = -1
        keepdim = tuple(keepdim)
    else:
        keepdim = (1,) * a.ndim

    r = func(a, **kwargs)
    return r, keepdim 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:55,代码来源:function_base.py

示例4: _ureduce

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import normalize_axis_tuple [as 别名]
def _ureduce(a, func, **kwargs):
    """
    Internal Function.
    Call `func` with `a` as first argument swapping the axes to use extended
    axis on functions that don't support it natively.

    Returns result and a.shape with axis dims set to 1.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    func : callable
        Reduction function capable of receiving a single axis argument.
        It is is called with `a` as first argument followed by `kwargs`.
    kwargs : keyword arguments
        additional keyword arguments to pass to `func`.

    Returns
    -------
    result : tuple
        Result of func(a, **kwargs) and a.shape with axis dims set to 1
        which can be used to reshape the result to the same shape a ufunc with
        keepdims=True would produce.

    """
    a = np.asanyarray(a)
    axis = kwargs.get('axis', None)
    if axis is not None:
        keepdim = list(a.shape)
        nd = a.ndim
        axis = _nx.normalize_axis_tuple(axis, nd)

        for ax in axis:
            keepdim[ax] = 1

        if len(axis) == 1:
            kwargs['axis'] = axis[0]
        else:
            keep = set(range(nd)) - set(axis)
            nkeep = len(keep)
            # swap axis that should not be reduced to front
            for i, s in enumerate(sorted(keep)):
                a = a.swapaxes(i, s)
            # merge reduced axis
            a = a.reshape(a.shape[:nkeep] + (-1,))
            kwargs['axis'] = -1
    else:
        keepdim = [1] * a.ndim

    r = func(a, **kwargs)
    return r, keepdim 
开发者ID:awslabs,项目名称:mxnet-lambda,代码行数:54,代码来源:function_base.py


注:本文中的numpy.core.numeric.normalize_axis_tuple方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。