本文整理汇总了Python中numpy.core.numeric.ndarray方法的典型用法代码示例。如果您正苦于以下问题:Python numeric.ndarray方法的具体用法?Python numeric.ndarray怎么用?Python numeric.ndarray使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.core.numeric
的用法示例。
在下文中一共展示了numeric.ndarray方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __getitem__
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def __getitem__(self, index):
self._getitem = True
try:
out = N.ndarray.__getitem__(self, index)
finally:
self._getitem = False
if not isinstance(out, N.ndarray):
return out
if out.ndim == 0:
return out[()]
if out.ndim == 1:
sh = out.shape[0]
# Determine when we should have a column array
try:
n = len(index)
except Exception:
n = 0
if n > 1 and isscalar(index[1]):
out.shape = (sh, 1)
else:
out.shape = (1, sh)
return out
示例2: tolist
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def tolist(self):
"""
Return the matrix as a (possibly nested) list.
See `ndarray.tolist` for full documentation.
See Also
--------
ndarray.tolist
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
"""
return self.__array__().tolist()
# To preserve orientation of result...
示例3: any
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def any(self, axis=None, out=None):
"""
Test whether any array element along a given axis evaluates to True.
Refer to `numpy.any` for full documentation.
Parameters
----------
axis : int, optional
Axis along which logical OR is performed
out : ndarray, optional
Output to existing array instead of creating new one, must have
same shape as expected output
Returns
-------
any : bool, ndarray
Returns a single bool if `axis` is ``None``; otherwise,
returns `ndarray`
"""
return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis)
示例4: __getitem__
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def __getitem__(self, index):
self._getitem = True
try:
out = N.ndarray.__getitem__(self, index)
finally:
self._getitem = False
if not isinstance(out, N.ndarray):
return out
if out.ndim == 0:
return out[()]
if out.ndim == 1:
sh = out.shape[0]
# Determine when we should have a column array
try:
n = len(index)
except:
n = 0
if n > 1 and isscalar(index[1]):
out.shape = (sh, 1)
else:
out.shape = (1, sh)
return out
示例5: asmatrix
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def asmatrix(data, dtype=None):
"""
Interpret the input as a matrix.
Unlike `matrix`, `asmatrix` does not make a copy if the input is already
a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``.
Parameters
----------
data : array_like
Input data.
dtype : data-type
Data-type of the output matrix.
Returns
-------
mat : matrix
`data` interpreted as a matrix.
Examples
--------
>>> x = np.array([[1, 2], [3, 4]])
>>> m = np.asmatrix(x)
>>> x[0,0] = 5
>>> m
matrix([[5, 2],
[3, 4]])
"""
return matrix(data, dtype=dtype, copy=False)
示例6: __mul__
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def __mul__(self, other):
if isinstance(other, (N.ndarray, list, tuple)) :
# This promotes 1-D vectors to row vectors
return N.dot(self, asmatrix(other))
if isscalar(other) or not hasattr(other, '__rmul__') :
return N.dot(self, other)
return NotImplemented
示例7: flatten
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def flatten(self, order='C'):
"""
Return a flattened copy of the matrix.
All `N` elements of the matrix are placed into a single row.
Parameters
----------
order : {'C', 'F', 'A', 'K'}, optional
'C' means to flatten in row-major (C-style) order. 'F' means to
flatten in column-major (Fortran-style) order. 'A' means to
flatten in column-major order if `m` is Fortran *contiguous* in
memory, row-major order otherwise. 'K' means to flatten `m` in
the order the elements occur in memory. The default is 'C'.
Returns
-------
y : matrix
A copy of the matrix, flattened to a `(1, N)` matrix where `N`
is the number of elements in the original matrix.
See Also
--------
ravel : Return a flattened array.
flat : A 1-D flat iterator over the matrix.
Examples
--------
>>> m = np.matrix([[1,2], [3,4]])
>>> m.flatten()
matrix([[1, 2, 3, 4]])
>>> m.flatten('F')
matrix([[1, 3, 2, 4]])
"""
return N.ndarray.flatten(self, order=order)
示例8: mean
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def mean(self, axis=None, dtype=None, out=None):
"""
Returns the average of the matrix elements along the given axis.
Refer to `numpy.mean` for full documentation.
See Also
--------
numpy.mean
Notes
-----
Same as `ndarray.mean` except that, where that returns an `ndarray`,
this returns a `matrix` object.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.mean()
5.5
>>> x.mean(0)
matrix([[ 4., 5., 6., 7.]])
>>> x.mean(1)
matrix([[ 1.5],
[ 5.5],
[ 9.5]])
"""
return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis)
示例9: std
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def std(self, axis=None, dtype=None, out=None, ddof=0):
"""
Return the standard deviation of the array elements along the given axis.
Refer to `numpy.std` for full documentation.
See Also
--------
numpy.std
Notes
-----
This is the same as `ndarray.std`, except that where an `ndarray` would
be returned, a `matrix` object is returned instead.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.std()
3.4520525295346629
>>> x.std(0)
matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]])
>>> x.std(1)
matrix([[ 1.11803399],
[ 1.11803399],
[ 1.11803399]])
"""
return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
示例10: var
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def var(self, axis=None, dtype=None, out=None, ddof=0):
"""
Returns the variance of the matrix elements, along the given axis.
Refer to `numpy.var` for full documentation.
See Also
--------
numpy.var
Notes
-----
This is the same as `ndarray.var`, except that where an `ndarray` would
be returned, a `matrix` object is returned instead.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.var()
11.916666666666666
>>> x.var(0)
matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]])
>>> x.var(1)
matrix([[ 1.25],
[ 1.25],
[ 1.25]])
"""
return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
示例11: all
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def all(self, axis=None, out=None):
"""
Test whether all matrix elements along a given axis evaluate to True.
Parameters
----------
See `numpy.all` for complete descriptions
See Also
--------
numpy.all
Notes
-----
This is the same as `ndarray.all`, but it returns a `matrix` object.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> y = x[0]; y
matrix([[0, 1, 2, 3]])
>>> (x == y)
matrix([[ True, True, True, True],
[False, False, False, False],
[False, False, False, False]])
>>> (x == y).all()
False
>>> (x == y).all(0)
matrix([[False, False, False, False]])
>>> (x == y).all(1)
matrix([[ True],
[False],
[False]])
"""
return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis)
示例12: max
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def max(self, axis=None, out=None):
"""
Return the maximum value along an axis.
Parameters
----------
See `amax` for complete descriptions
See Also
--------
amax, ndarray.max
Notes
-----
This is the same as `ndarray.max`, but returns a `matrix` object
where `ndarray.max` would return an ndarray.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.max()
11
>>> x.max(0)
matrix([[ 8, 9, 10, 11]])
>>> x.max(1)
matrix([[ 3],
[ 7],
[11]])
"""
return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis)
示例13: argmax
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def argmax(self, axis=None, out=None):
"""
Indexes of the maximum values along an axis.
Return the indexes of the first occurrences of the maximum values
along the specified axis. If axis is None, the index is for the
flattened matrix.
Parameters
----------
See `numpy.argmax` for complete descriptions
See Also
--------
numpy.argmax
Notes
-----
This is the same as `ndarray.argmax`, but returns a `matrix` object
where `ndarray.argmax` would return an `ndarray`.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.argmax()
11
>>> x.argmax(0)
matrix([[2, 2, 2, 2]])
>>> x.argmax(1)
matrix([[3],
[3],
[3]])
"""
return N.ndarray.argmax(self, axis, out)._align(axis)
示例14: min
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def min(self, axis=None, out=None):
"""
Return the minimum value along an axis.
Parameters
----------
See `amin` for complete descriptions.
See Also
--------
amin, ndarray.min
Notes
-----
This is the same as `ndarray.min`, but returns a `matrix` object
where `ndarray.min` would return an ndarray.
Examples
--------
>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, -1, -2, -3],
[ -4, -5, -6, -7],
[ -8, -9, -10, -11]])
>>> x.min()
-11
>>> x.min(0)
matrix([[ -8, -9, -10, -11]])
>>> x.min(1)
matrix([[ -3],
[ -7],
[-11]])
"""
return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis)
示例15: ptp
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def ptp(self, axis=None, out=None):
"""
Peak-to-peak (maximum - minimum) value along the given axis.
Refer to `numpy.ptp` for full documentation.
See Also
--------
numpy.ptp
Notes
-----
Same as `ndarray.ptp`, except, where that would return an `ndarray` object,
this returns a `matrix` object.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.ptp()
11
>>> x.ptp(0)
matrix([[8, 8, 8, 8]])
>>> x.ptp(1)
matrix([[3],
[3],
[3]])
"""
return N.ndarray.ptp(self, axis, out)._align(axis)