当前位置: 首页>>代码示例>>Python>>正文


Python numeric.ndarray方法代码示例

本文整理汇总了Python中numpy.core.numeric.ndarray方法的典型用法代码示例。如果您正苦于以下问题:Python numeric.ndarray方法的具体用法?Python numeric.ndarray怎么用?Python numeric.ndarray使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.core.numeric的用法示例。


在下文中一共展示了numeric.ndarray方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __getitem__

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def __getitem__(self, index):
        self._getitem = True

        try:
            out = N.ndarray.__getitem__(self, index)
        finally:
            self._getitem = False

        if not isinstance(out, N.ndarray):
            return out

        if out.ndim == 0:
            return out[()]
        if out.ndim == 1:
            sh = out.shape[0]
            # Determine when we should have a column array
            try:
                n = len(index)
            except Exception:
                n = 0
            if n > 1 and isscalar(index[1]):
                out.shape = (sh, 1)
            else:
                out.shape = (1, sh)
        return out 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:27,代码来源:defmatrix.py

示例2: tolist

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def tolist(self):
        """
        Return the matrix as a (possibly nested) list.

        See `ndarray.tolist` for full documentation.

        See Also
        --------
        ndarray.tolist

        Examples
        --------
        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
        matrix([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11]])
        >>> x.tolist()
        [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

        """
        return self.__array__().tolist()

    # To preserve orientation of result... 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:25,代码来源:defmatrix.py

示例3: any

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def any(self, axis=None, out=None):
        """
        Test whether any array element along a given axis evaluates to True.

        Refer to `numpy.any` for full documentation.

        Parameters
        ----------
        axis : int, optional
            Axis along which logical OR is performed
        out : ndarray, optional
            Output to existing array instead of creating new one, must have
            same shape as expected output

        Returns
        -------
            any : bool, ndarray
                Returns a single bool if `axis` is ``None``; otherwise,
                returns `ndarray`

        """
        return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:24,代码来源:defmatrix.py

示例4: __getitem__

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def __getitem__(self, index):
        self._getitem = True

        try:
            out = N.ndarray.__getitem__(self, index)
        finally:
            self._getitem = False

        if not isinstance(out, N.ndarray):
            return out

        if out.ndim == 0:
            return out[()]
        if out.ndim == 1:
            sh = out.shape[0]
            # Determine when we should have a column array
            try:
                n = len(index)
            except:
                n = 0
            if n > 1 and isscalar(index[1]):
                out.shape = (sh, 1)
            else:
                out.shape = (1, sh)
        return out 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:27,代码来源:defmatrix.py

示例5: asmatrix

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def asmatrix(data, dtype=None):
    """
    Interpret the input as a matrix.

    Unlike `matrix`, `asmatrix` does not make a copy if the input is already
    a matrix or an ndarray.  Equivalent to ``matrix(data, copy=False)``.

    Parameters
    ----------
    data : array_like
        Input data.
    dtype : data-type
       Data-type of the output matrix.

    Returns
    -------
    mat : matrix
        `data` interpreted as a matrix.

    Examples
    --------
    >>> x = np.array([[1, 2], [3, 4]])

    >>> m = np.asmatrix(x)

    >>> x[0,0] = 5

    >>> m
    matrix([[5, 2],
            [3, 4]])

    """
    return matrix(data, dtype=dtype, copy=False) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:35,代码来源:defmatrix.py

示例6: __mul__

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def __mul__(self, other):
        if isinstance(other, (N.ndarray, list, tuple)) :
            # This promotes 1-D vectors to row vectors
            return N.dot(self, asmatrix(other))
        if isscalar(other) or not hasattr(other, '__rmul__') :
            return N.dot(self, other)
        return NotImplemented 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:9,代码来源:defmatrix.py

示例7: flatten

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def flatten(self, order='C'):
        """
        Return a flattened copy of the matrix.

        All `N` elements of the matrix are placed into a single row.

        Parameters
        ----------
        order : {'C', 'F', 'A', 'K'}, optional
            'C' means to flatten in row-major (C-style) order. 'F' means to
            flatten in column-major (Fortran-style) order. 'A' means to
            flatten in column-major order if `m` is Fortran *contiguous* in
            memory, row-major order otherwise. 'K' means to flatten `m` in
            the order the elements occur in memory. The default is 'C'.

        Returns
        -------
        y : matrix
            A copy of the matrix, flattened to a `(1, N)` matrix where `N`
            is the number of elements in the original matrix.

        See Also
        --------
        ravel : Return a flattened array.
        flat : A 1-D flat iterator over the matrix.

        Examples
        --------
        >>> m = np.matrix([[1,2], [3,4]])
        >>> m.flatten()
        matrix([[1, 2, 3, 4]])
        >>> m.flatten('F')
        matrix([[1, 3, 2, 4]])

        """
        return N.ndarray.flatten(self, order=order) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:38,代码来源:defmatrix.py

示例8: mean

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def mean(self, axis=None, dtype=None, out=None):
        """
        Returns the average of the matrix elements along the given axis.

        Refer to `numpy.mean` for full documentation.

        See Also
        --------
        numpy.mean

        Notes
        -----
        Same as `ndarray.mean` except that, where that returns an `ndarray`,
        this returns a `matrix` object.

        Examples
        --------
        >>> x = np.matrix(np.arange(12).reshape((3, 4)))
        >>> x
        matrix([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11]])
        >>> x.mean()
        5.5
        >>> x.mean(0)
        matrix([[ 4.,  5.,  6.,  7.]])
        >>> x.mean(1)
        matrix([[ 1.5],
                [ 5.5],
                [ 9.5]])

        """
        return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:35,代码来源:defmatrix.py

示例9: std

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def std(self, axis=None, dtype=None, out=None, ddof=0):
        """
        Return the standard deviation of the array elements along the given axis.

        Refer to `numpy.std` for full documentation.

        See Also
        --------
        numpy.std

        Notes
        -----
        This is the same as `ndarray.std`, except that where an `ndarray` would
        be returned, a `matrix` object is returned instead.

        Examples
        --------
        >>> x = np.matrix(np.arange(12).reshape((3, 4)))
        >>> x
        matrix([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11]])
        >>> x.std()
        3.4520525295346629
        >>> x.std(0)
        matrix([[ 3.26598632,  3.26598632,  3.26598632,  3.26598632]])
        >>> x.std(1)
        matrix([[ 1.11803399],
                [ 1.11803399],
                [ 1.11803399]])

        """
        return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:35,代码来源:defmatrix.py

示例10: var

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def var(self, axis=None, dtype=None, out=None, ddof=0):
        """
        Returns the variance of the matrix elements, along the given axis.

        Refer to `numpy.var` for full documentation.

        See Also
        --------
        numpy.var

        Notes
        -----
        This is the same as `ndarray.var`, except that where an `ndarray` would
        be returned, a `matrix` object is returned instead.

        Examples
        --------
        >>> x = np.matrix(np.arange(12).reshape((3, 4)))
        >>> x
        matrix([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11]])
        >>> x.var()
        11.916666666666666
        >>> x.var(0)
        matrix([[ 10.66666667,  10.66666667,  10.66666667,  10.66666667]])
        >>> x.var(1)
        matrix([[ 1.25],
                [ 1.25],
                [ 1.25]])

        """
        return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:35,代码来源:defmatrix.py

示例11: all

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def all(self, axis=None, out=None):
        """
        Test whether all matrix elements along a given axis evaluate to True.

        Parameters
        ----------
        See `numpy.all` for complete descriptions

        See Also
        --------
        numpy.all

        Notes
        -----
        This is the same as `ndarray.all`, but it returns a `matrix` object.

        Examples
        --------
        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
        matrix([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11]])
        >>> y = x[0]; y
        matrix([[0, 1, 2, 3]])
        >>> (x == y)
        matrix([[ True,  True,  True,  True],
                [False, False, False, False],
                [False, False, False, False]])
        >>> (x == y).all()
        False
        >>> (x == y).all(0)
        matrix([[False, False, False, False]])
        >>> (x == y).all(1)
        matrix([[ True],
                [False],
                [False]])

        """
        return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:41,代码来源:defmatrix.py

示例12: max

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def max(self, axis=None, out=None):
        """
        Return the maximum value along an axis.

        Parameters
        ----------
        See `amax` for complete descriptions

        See Also
        --------
        amax, ndarray.max

        Notes
        -----
        This is the same as `ndarray.max`, but returns a `matrix` object
        where `ndarray.max` would return an ndarray.

        Examples
        --------
        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
        matrix([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11]])
        >>> x.max()
        11
        >>> x.max(0)
        matrix([[ 8,  9, 10, 11]])
        >>> x.max(1)
        matrix([[ 3],
                [ 7],
                [11]])

        """
        return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:36,代码来源:defmatrix.py

示例13: argmax

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def argmax(self, axis=None, out=None):
        """
        Indexes of the maximum values along an axis.

        Return the indexes of the first occurrences of the maximum values
        along the specified axis.  If axis is None, the index is for the
        flattened matrix.

        Parameters
        ----------
        See `numpy.argmax` for complete descriptions

        See Also
        --------
        numpy.argmax

        Notes
        -----
        This is the same as `ndarray.argmax`, but returns a `matrix` object
        where `ndarray.argmax` would return an `ndarray`.

        Examples
        --------
        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
        matrix([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11]])
        >>> x.argmax()
        11
        >>> x.argmax(0)
        matrix([[2, 2, 2, 2]])
        >>> x.argmax(1)
        matrix([[3],
                [3],
                [3]])

        """
        return N.ndarray.argmax(self, axis, out)._align(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:40,代码来源:defmatrix.py

示例14: min

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def min(self, axis=None, out=None):
        """
        Return the minimum value along an axis.

        Parameters
        ----------
        See `amin` for complete descriptions.

        See Also
        --------
        amin, ndarray.min

        Notes
        -----
        This is the same as `ndarray.min`, but returns a `matrix` object
        where `ndarray.min` would return an ndarray.

        Examples
        --------
        >>> x = -np.matrix(np.arange(12).reshape((3,4))); x
        matrix([[  0,  -1,  -2,  -3],
                [ -4,  -5,  -6,  -7],
                [ -8,  -9, -10, -11]])
        >>> x.min()
        -11
        >>> x.min(0)
        matrix([[ -8,  -9, -10, -11]])
        >>> x.min(1)
        matrix([[ -3],
                [ -7],
                [-11]])

        """
        return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:36,代码来源:defmatrix.py

示例15: ptp

# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import ndarray [as 别名]
def ptp(self, axis=None, out=None):
        """
        Peak-to-peak (maximum - minimum) value along the given axis.

        Refer to `numpy.ptp` for full documentation.

        See Also
        --------
        numpy.ptp

        Notes
        -----
        Same as `ndarray.ptp`, except, where that would return an `ndarray` object,
        this returns a `matrix` object.

        Examples
        --------
        >>> x = np.matrix(np.arange(12).reshape((3,4))); x
        matrix([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11]])
        >>> x.ptp()
        11
        >>> x.ptp(0)
        matrix([[8, 8, 8, 8]])
        >>> x.ptp(1)
        matrix([[3],
                [3],
                [3]])

        """
        return N.ndarray.ptp(self, axis, out)._align(axis) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:34,代码来源:defmatrix.py


注:本文中的numpy.core.numeric.ndarray方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。