本文整理汇总了Python中numpy.core.numeric.copyto方法的典型用法代码示例。如果您正苦于以下问题:Python numeric.copyto方法的具体用法?Python numeric.copyto怎么用?Python numeric.copyto使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.core.numeric
的用法示例。
在下文中一共展示了numeric.copyto方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: place
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def place(arr, mask, vals):
"""
Change elements of an array based on conditional and input values.
Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that
`place` uses the first N elements of `vals`, where N is the number of
True values in `mask`, while `copyto` uses the elements where `mask`
is True.
Note that `extract` does the exact opposite of `place`.
Parameters
----------
arr : ndarray
Array to put data into.
mask : array_like
Boolean mask array. Must have the same size as `a`.
vals : 1-D sequence
Values to put into `a`. Only the first N elements are used, where
N is the number of True values in `mask`. If `vals` is smaller
than N, it will be repeated, and if elements of `a` are to be masked,
this sequence must be non-empty.
See Also
--------
copyto, put, take, extract
Examples
--------
>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[ 0, 1, 2],
[44, 55, 44]])
"""
if not isinstance(arr, np.ndarray):
raise TypeError("argument 1 must be numpy.ndarray, "
"not {name}".format(name=type(arr).__name__))
return _insert(arr, mask, vals)
示例2: place
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def place(arr, mask, vals):
"""
Change elements of an array based on conditional and input values.
Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that
`place` uses the first N elements of `vals`, where N is the number of
True values in `mask`, while `copyto` uses the elements where `mask`
is True.
Note that `extract` does the exact opposite of `place`.
Parameters
----------
arr : ndarray
Array to put data into.
mask : array_like
Boolean mask array. Must have the same size as `a`.
vals : 1-D sequence
Values to put into `a`. Only the first N elements are used, where
N is the number of True values in `mask`. If `vals` is smaller
than N it will be repeated.
See Also
--------
copyto, put, take, extract
Examples
--------
>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[ 0, 1, 2],
[44, 55, 44]])
"""
if not isinstance(arr, np.ndarray):
raise TypeError("argument 1 must be numpy.ndarray, "
"not {name}".format(name=type(arr).__name__))
return _insert(arr, mask, vals)
示例3: place
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def place(arr, mask, vals):
"""
Change elements of an array based on conditional and input values.
Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that
`place` uses the first N elements of `vals`, where N is the number of
True values in `mask`, while `copyto` uses the elements where `mask`
is True.
Note that `extract` does the exact opposite of `place`.
Parameters
----------
arr : array_like
Array to put data into.
mask : array_like
Boolean mask array. Must have the same size as `a`.
vals : 1-D sequence
Values to put into `a`. Only the first N elements are used, where
N is the number of True values in `mask`. If `vals` is smaller
than N it will be repeated.
See Also
--------
copyto, put, take, extract
Examples
--------
>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[ 0, 1, 2],
[44, 55, 44]])
"""
return _insert(arr, mask, vals)
示例4: unwrap
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def unwrap(p, discont=pi, axis=-1):
"""
Unwrap by changing deltas between values to 2*pi complement.
Unwrap radian phase `p` by changing absolute jumps greater than
`discont` to their 2*pi complement along the given axis.
Parameters
----------
p : array_like
Input array.
discont : float, optional
Maximum discontinuity between values, default is ``pi``.
axis : int, optional
Axis along which unwrap will operate, default is the last axis.
Returns
-------
out : ndarray
Output array.
See Also
--------
rad2deg, deg2rad
Notes
-----
If the discontinuity in `p` is smaller than ``pi``, but larger than
`discont`, no unwrapping is done because taking the 2*pi complement
would only make the discontinuity larger.
Examples
--------
>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
>>> np.unwrap(phase)
array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ])
"""
p = asarray(p)
nd = p.ndim
dd = diff(p, axis=axis)
slice1 = [slice(None, None)]*nd # full slices
slice1[axis] = slice(1, None)
slice1 = tuple(slice1)
ddmod = mod(dd + pi, 2*pi) - pi
_nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0))
ph_correct = ddmod - dd
_nx.copyto(ph_correct, 0, where=abs(dd) < discont)
up = array(p, copy=True, dtype='d')
up[slice1] = p[slice1] + ph_correct.cumsum(axis)
return up
示例5: extract
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def extract(condition, arr):
"""
Return the elements of an array that satisfy some condition.
This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If
`condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``.
Note that `place` does the exact opposite of `extract`.
Parameters
----------
condition : array_like
An array whose nonzero or True entries indicate the elements of `arr`
to extract.
arr : array_like
Input array of the same size as `condition`.
Returns
-------
extract : ndarray
Rank 1 array of values from `arr` where `condition` is True.
See Also
--------
take, put, copyto, compress, place
Examples
--------
>>> arr = np.arange(12).reshape((3, 4))
>>> arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> condition = np.mod(arr, 3)==0
>>> condition
array([[ True, False, False, True],
[False, False, True, False],
[False, True, False, False]])
>>> np.extract(condition, arr)
array([0, 3, 6, 9])
If `condition` is boolean:
>>> arr[condition]
array([0, 3, 6, 9])
"""
return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
示例6: unwrap
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def unwrap(p, discont=pi, axis=-1):
"""
Unwrap by changing deltas between values to 2*pi complement.
Unwrap radian phase `p` by changing absolute jumps greater than
`discont` to their 2*pi complement along the given axis.
Parameters
----------
p : array_like
Input array.
discont : float, optional
Maximum discontinuity between values, default is ``pi``.
axis : int, optional
Axis along which unwrap will operate, default is the last axis.
Returns
-------
out : ndarray
Output array.
See Also
--------
rad2deg, deg2rad
Notes
-----
If the discontinuity in `p` is smaller than ``pi``, but larger than
`discont`, no unwrapping is done because taking the 2*pi complement
would only make the discontinuity larger.
Examples
--------
>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
>>> np.unwrap(phase)
array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ])
"""
p = asarray(p)
nd = len(p.shape)
dd = diff(p, axis=axis)
slice1 = [slice(None, None)]*nd # full slices
slice1[axis] = slice(1, None)
ddmod = mod(dd + pi, 2*pi) - pi
_nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0))
ph_correct = ddmod - dd
_nx.copyto(ph_correct, 0, where=abs(dd) < discont)
up = array(p, copy=True, dtype='d')
up[slice1] = p[slice1] + ph_correct.cumsum(axis)
return up
示例7: extract
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def extract(condition, arr):
"""
Return the elements of an array that satisfy some condition.
This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If
`condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``.
Note that `place` does the exact opposite of `extract`.
Parameters
----------
condition : array_like
An array whose nonzero or True entries indicate the elements of `arr`
to extract.
arr : array_like
Input array of the same size as `condition`.
Returns
-------
extract : ndarray
Rank 1 array of values from `arr` where `condition` is True.
See Also
--------
take, put, copyto, compress, place
Examples
--------
>>> arr = np.arange(12).reshape((3, 4))
>>> arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> condition = np.mod(arr, 3)==0
>>> condition
array([[ True, False, False, True],
[False, False, True, False],
[False, True, False, False]], dtype=bool)
>>> np.extract(condition, arr)
array([0, 3, 6, 9])
If `condition` is boolean:
>>> arr[condition]
array([0, 3, 6, 9])
"""
return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
示例8: unwrap
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def unwrap(p, discont=pi, axis=-1):
"""
Unwrap by changing deltas between values to 2*pi complement.
Unwrap radian phase `p` by changing absolute jumps greater than
`discont` to their 2*pi complement along the given axis.
Parameters
----------
p : array_like
Input array.
discont : float, optional
Maximum discontinuity between values, default is ``pi``.
axis : int, optional
Axis along which unwrap will operate, default is the last axis.
Returns
-------
out : ndarray
Output array.
See Also
--------
rad2deg, deg2rad
Notes
-----
If the discontinuity in `p` is smaller than ``pi``, but larger than
`discont`, no unwrapping is done because taking the 2*pi complement
would only make the discontinuity larger.
Examples
--------
>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
>>> np.unwrap(phase)
array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ])
"""
p = asarray(p)
nd = p.ndim
dd = diff(p, axis=axis)
slice1 = [slice(None, None)]*nd # full slices
slice1[axis] = slice(1, None)
ddmod = mod(dd + pi, 2*pi) - pi
_nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0))
ph_correct = ddmod - dd
_nx.copyto(ph_correct, 0, where=abs(dd) < discont)
up = array(p, copy=True, dtype='d')
up[slice1] = p[slice1] + ph_correct.cumsum(axis)
return up
示例9: unwrap
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import copyto [as 别名]
def unwrap(p, discont=pi, axis=-1):
"""
Unwrap by changing deltas between values to 2*pi complement.
Unwrap radian phase `p` by changing absolute jumps greater than
`discont` to their 2*pi complement along the given axis.
Parameters
----------
p : array_like
Input array.
discont : float, optional
Maximum discontinuity between values, default is ``pi``.
axis : int, optional
Axis along which unwrap will operate, default is the last axis.
Returns
-------
out : ndarray
Output array.
See Also
--------
rad2deg, deg2rad
Notes
-----
If the discontinuity in `p` is smaller than ``pi``, but larger than
`discont`, no unwrapping is done because taking the 2*pi complement
would only make the discontinuity larger.
Examples
--------
>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
>>> np.unwrap(phase)
array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ])
"""
p = asarray(p)
nd = len(p.shape)
dd = diff(p, axis=axis)
slice1 = [slice(None, None)]*nd # full slices
slice1[axis] = slice(1, None)
ddmod = mod(dd+pi, 2*pi)-pi
_nx.copyto(ddmod, pi, where=(ddmod==-pi) & (dd > 0))
ph_correct = ddmod - dd;
_nx.copyto(ph_correct, 0, where=abs(dd)<discont)
up = array(p, copy=True, dtype='d')
up[slice1] = p[slice1] + ph_correct.cumsum(axis)
return up