本文整理汇总了Python中numpy.core.numeric.array方法的典型用法代码示例。如果您正苦于以下问题:Python numeric.array方法的具体用法?Python numeric.array怎么用?Python numeric.array使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.core.numeric
的用法示例。
在下文中一共展示了numeric.array方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __getitem__
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def __getitem__(self, index):
self._getitem = True
try:
out = N.ndarray.__getitem__(self, index)
finally:
self._getitem = False
if not isinstance(out, N.ndarray):
return out
if out.ndim == 0:
return out[()]
if out.ndim == 1:
sh = out.shape[0]
# Determine when we should have a column array
try:
n = len(index)
except Exception:
n = 0
if n > 1 and isscalar(index[1]):
out.shape = (sh, 1)
else:
out.shape = (1, sh)
return out
示例2: any
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def any(self, axis=None, out=None):
"""
Test whether any array element along a given axis evaluates to True.
Refer to `numpy.any` for full documentation.
Parameters
----------
axis : int, optional
Axis along which logical OR is performed
out : ndarray, optional
Output to existing array instead of creating new one, must have
same shape as expected output
Returns
-------
any : bool, ndarray
Returns a single bool if `axis` is ``None``; otherwise,
returns `ndarray`
"""
return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis)
示例3: _make_along_axis_idx
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def _make_along_axis_idx(arr_shape, indices, axis):
# compute dimensions to iterate over
if not _nx.issubdtype(indices.dtype, _nx.integer):
raise IndexError('`indices` must be an integer array')
if len(arr_shape) != indices.ndim:
raise ValueError(
"`indices` and `arr` must have the same number of dimensions")
shape_ones = (1,) * indices.ndim
dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))
# build a fancy index, consisting of orthogonal aranges, with the
# requested index inserted at the right location
fancy_index = []
for dim, n in zip(dest_dims, arr_shape):
if dim is None:
fancy_index.append(indices)
else:
ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
fancy_index.append(_nx.arange(n).reshape(ind_shape))
return tuple(fancy_index)
示例4: asscalar
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def asscalar(a):
"""
Convert an array of size 1 to its scalar equivalent.
Parameters
----------
a : ndarray
Input array of size 1.
Returns
-------
out : scalar
Scalar representation of `a`. The output data type is the same type
returned by the input's `item` method.
Examples
--------
>>> np.asscalar(np.array([24]))
24
"""
return a.item()
#-----------------------------------------------------------------------------
示例5: __getitem__
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def __getitem__(self, index):
self._getitem = True
try:
out = N.ndarray.__getitem__(self, index)
finally:
self._getitem = False
if not isinstance(out, N.ndarray):
return out
if out.ndim == 0:
return out[()]
if out.ndim == 1:
sh = out.shape[0]
# Determine when we should have a column array
try:
n = len(index)
except:
n = 0
if n > 1 and isscalar(index[1]):
out.shape = (sh, 1)
else:
out.shape = (1, sh)
return out
示例6: __init__
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def __init__(self, c_or_r, r=0, variable=None):
if isinstance(c_or_r, poly1d):
for key in c_or_r.__dict__.keys():
self.__dict__[key] = c_or_r.__dict__[key]
if variable is not None:
self.__dict__['variable'] = variable
return
if r:
c_or_r = poly(c_or_r)
c_or_r = atleast_1d(c_or_r)
if len(c_or_r.shape) > 1:
raise ValueError("Polynomial must be 1d only.")
c_or_r = trim_zeros(c_or_r, trim='f')
if len(c_or_r) == 0:
c_or_r = NX.array([0.])
self.__dict__['coeffs'] = c_or_r
self.__dict__['order'] = len(c_or_r) - 1
if variable is None:
variable = 'x'
self.__dict__['variable'] = variable
示例7: asmatrix
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def asmatrix(data, dtype=None):
"""
Interpret the input as a matrix.
Unlike `matrix`, `asmatrix` does not make a copy if the input is already
a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``.
Parameters
----------
data : array_like
Input data.
dtype : data-type
Data-type of the output matrix.
Returns
-------
mat : matrix
`data` interpreted as a matrix.
Examples
--------
>>> x = np.array([[1, 2], [3, 4]])
>>> m = np.asmatrix(x)
>>> x[0,0] = 5
>>> m
matrix([[5, 2],
[3, 4]])
"""
return matrix(data, dtype=dtype, copy=False)
示例8: sum
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def sum(self, axis=None, dtype=None, out=None):
"""
Returns the sum of the matrix elements, along the given axis.
Refer to `numpy.sum` for full documentation.
See Also
--------
numpy.sum
Notes
-----
This is the same as `ndarray.sum`, except that where an `ndarray` would
be returned, a `matrix` object is returned instead.
Examples
--------
>>> x = np.matrix([[1, 2], [4, 3]])
>>> x.sum()
10
>>> x.sum(axis=1)
matrix([[3],
[7]])
>>> x.sum(axis=1, dtype='float')
matrix([[ 3.],
[ 7.]])
>>> out = np.zeros((1, 2), dtype='float')
>>> x.sum(axis=1, dtype='float', out=out)
matrix([[ 3.],
[ 7.]])
"""
return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis)
# To update docstring from array to matrix...
示例9: std
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def std(self, axis=None, dtype=None, out=None, ddof=0):
"""
Return the standard deviation of the array elements along the given axis.
Refer to `numpy.std` for full documentation.
See Also
--------
numpy.std
Notes
-----
This is the same as `ndarray.std`, except that where an `ndarray` would
be returned, a `matrix` object is returned instead.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.std()
3.4520525295346629
>>> x.std(0)
matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]])
>>> x.std(1)
matrix([[ 1.11803399],
[ 1.11803399],
[ 1.11803399]])
"""
return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
示例10: prod
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def prod(self, axis=None, dtype=None, out=None):
"""
Return the product of the array elements over the given axis.
Refer to `prod` for full documentation.
See Also
--------
prod, ndarray.prod
Notes
-----
Same as `ndarray.prod`, except, where that returns an `ndarray`, this
returns a `matrix` object instead.
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.prod()
0
>>> x.prod(0)
matrix([[ 0, 45, 120, 231]])
>>> x.prod(1)
matrix([[ 0],
[ 840],
[7920]])
"""
return N.ndarray.prod(self, axis, dtype, out, keepdims=True)._collapse(axis)
示例11: getA
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def getA(self):
"""
Return `self` as an `ndarray` object.
Equivalent to ``np.asarray(self)``.
Parameters
----------
None
Returns
-------
ret : ndarray
`self` as an `ndarray`
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.getA()
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
"""
return self.__array__()
示例12: getA1
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def getA1(self):
"""
Return `self` as a flattened `ndarray`.
Equivalent to ``np.asarray(x).ravel()``
Parameters
----------
None
Returns
-------
ret : ndarray
`self`, 1-D, as an `ndarray`
Examples
--------
>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.getA1()
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
"""
return self.__array__().ravel()
示例13: __init__
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def __init__(self, c_or_r, r=False, variable=None):
if isinstance(c_or_r, poly1d):
self._variable = c_or_r._variable
self._coeffs = c_or_r._coeffs
if set(c_or_r.__dict__) - set(self.__dict__):
msg = ("In the future extra properties will not be copied "
"across when constructing one poly1d from another")
warnings.warn(msg, FutureWarning, stacklevel=2)
self.__dict__.update(c_or_r.__dict__)
if variable is not None:
self._variable = variable
return
if r:
c_or_r = poly(c_or_r)
c_or_r = atleast_1d(c_or_r)
if c_or_r.ndim > 1:
raise ValueError("Polynomial must be 1d only.")
c_or_r = trim_zeros(c_or_r, trim='f')
if len(c_or_r) == 0:
c_or_r = NX.array([0.])
self._coeffs = c_or_r
if variable is None:
variable = 'x'
self._variable = variable
示例14: real
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def real(val):
"""
Return the real part of the complex argument.
Parameters
----------
val : array_like
Input array.
Returns
-------
out : ndarray or scalar
The real component of the complex argument. If `val` is real, the type
of `val` is used for the output. If `val` has complex elements, the
returned type is float.
See Also
--------
real_if_close, imag, angle
Examples
--------
>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.real
array([ 1., 3., 5.])
>>> a.real = 9
>>> a
array([ 9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = np.array([9, 8, 7])
>>> a
array([ 9.+2.j, 8.+4.j, 7.+6.j])
>>> np.real(1 + 1j)
1.0
"""
try:
return val.real
except AttributeError:
return asanyarray(val).real
示例15: imag
# 需要导入模块: from numpy.core import numeric [as 别名]
# 或者: from numpy.core.numeric import array [as 别名]
def imag(val):
"""
Return the imaginary part of the complex argument.
Parameters
----------
val : array_like
Input array.
Returns
-------
out : ndarray or scalar
The imaginary component of the complex argument. If `val` is real,
the type of `val` is used for the output. If `val` has complex
elements, the returned type is float.
See Also
--------
real, angle, real_if_close
Examples
--------
>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.imag
array([ 2., 4., 6.])
>>> a.imag = np.array([8, 10, 12])
>>> a
array([ 1. +8.j, 3.+10.j, 5.+12.j])
>>> np.imag(1 + 1j)
1.0
"""
try:
return val.imag
except AttributeError:
return asanyarray(val).imag