本文整理汇总了Python中numpy.core.multiarray.ndarray方法的典型用法代码示例。如果您正苦于以下问题:Python multiarray.ndarray方法的具体用法?Python multiarray.ndarray怎么用?Python multiarray.ndarray使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.core.multiarray
的用法示例。
在下文中一共展示了multiarray.ndarray方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _mean
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
arr = asanyarray(a)
rcount = _count_reduce_items(arr, axis)
# Make this warning show up first
if rcount == 0:
warnings.warn("Mean of empty slice.", RuntimeWarning)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
dtype = mu.dtype('f8')
ret = umr_sum(arr, axis, dtype, out, keepdims)
if isinstance(ret, mu.ndarray):
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
示例2: _mean
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
arr = asanyarray(a)
rcount = _count_reduce_items(arr, axis)
# Make this warning show up first
if rcount == 0:
warnings.warn("Mean of empty slice.", RuntimeWarning)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
dtype = mu.dtype('f8')
ret = um.add.reduce(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
if isinstance(ret, mu.ndarray):
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
else:
ret = ret.dtype.type(ret / rcount)
return ret
示例3: _mean
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
arr = asanyarray(a)
rcount = _count_reduce_items(arr, axis)
# Make this warning show up first
if rcount == 0:
warnings.warn("Mean of empty slice.", RuntimeWarning)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
dtype = mu.dtype('f8')
ret = umr_sum(arr, axis, dtype, out, keepdims)
if isinstance(ret, mu.ndarray):
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
示例4: _std
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def _std(array, epsilon=1.0, bounds=None, axis=None, dtype=None, keepdims=np._NoValue, accountant=None, nan=False):
ret = _var(array, epsilon=epsilon, bounds=bounds, axis=axis, dtype=dtype, keepdims=keepdims, accountant=accountant,
nan=nan)
if isinstance(ret, mu.ndarray):
ret = um.sqrt(ret)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(um.sqrt(ret))
else:
ret = um.sqrt(ret)
return ret
示例5: _mean
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
arr = asanyarray(a)
is_float16_result = False
rcount = _count_reduce_items(arr, axis)
# Make this warning show up first
if rcount == 0:
warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None:
if issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
dtype = mu.dtype('f8')
elif issubclass(arr.dtype.type, nt.float16):
dtype = mu.dtype('f4')
is_float16_result = True
ret = umr_sum(arr, axis, dtype, out, keepdims)
if isinstance(ret, mu.ndarray):
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
if is_float16_result and out is None:
ret = arr.dtype.type(ret)
elif hasattr(ret, 'dtype'):
if is_float16_result:
ret = arr.dtype.type(ret / rcount)
else:
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
示例6: _std
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
keepdims=keepdims)
if isinstance(ret, mu.ndarray):
ret = um.sqrt(ret, out=ret)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(um.sqrt(ret))
else:
ret = um.sqrt(ret)
return ret
示例7: ascontiguousarray
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def ascontiguousarray(a, dtype=None):
"""
Return a contiguous array in memory (C order).
Parameters
----------
a : array_like
Input array.
dtype : str or dtype object, optional
Data-type of returned array.
Returns
-------
out : ndarray
Contiguous array of same shape and content as `a`, with type `dtype`
if specified.
See Also
--------
asfortranarray : Convert input to an ndarray with column-major
memory order.
require : Return an ndarray that satisfies requirements.
ndarray.flags : Information about the memory layout of the array.
Examples
--------
>>> x = np.arange(6).reshape(2,3)
>>> np.ascontiguousarray(x, dtype=np.float32)
array([[ 0., 1., 2.],
[ 3., 4., 5.]], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True
"""
return array(a, dtype, copy=False, order='C', ndmin=1)
示例8: asfortranarray
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def asfortranarray(a, dtype=None):
"""
Return an array laid out in Fortran order in memory.
Parameters
----------
a : array_like
Input array.
dtype : str or dtype object, optional
By default, the data-type is inferred from the input data.
Returns
-------
out : ndarray
The input `a` in Fortran, or column-major, order.
See Also
--------
ascontiguousarray : Convert input to a contiguous (C order) array.
asanyarray : Convert input to an ndarray with either row or
column-major memory order.
require : Return an ndarray that satisfies requirements.
ndarray.flags : Information about the memory layout of the array.
Examples
--------
>>> x = np.arange(6).reshape(2,3)
>>> y = np.asfortranarray(x)
>>> x.flags['F_CONTIGUOUS']
False
>>> y.flags['F_CONTIGUOUS']
True
"""
return array(a, dtype, copy=False, order='F', ndmin=1)
示例9: argwhere
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def argwhere(a):
"""
Find the indices of array elements that are non-zero, grouped by element.
Parameters
----------
a : array_like
Input data.
Returns
-------
index_array : ndarray
Indices of elements that are non-zero. Indices are grouped by element.
See Also
--------
where, nonzero
Notes
-----
``np.argwhere(a)`` is the same as ``np.transpose(np.nonzero(a))``.
The output of ``argwhere`` is not suitable for indexing arrays.
For this purpose use ``where(a)`` instead.
Examples
--------
>>> x = np.arange(6).reshape(2,3)
>>> x
array([[0, 1, 2],
[3, 4, 5]])
>>> np.argwhere(x>1)
array([[0, 2],
[1, 0],
[1, 1],
[1, 2]])
"""
return transpose(nonzero(a))
示例10: flatnonzero
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def flatnonzero(a):
"""
Return indices that are non-zero in the flattened version of a.
This is equivalent to a.ravel().nonzero()[0].
Parameters
----------
a : ndarray
Input array.
Returns
-------
res : ndarray
Output array, containing the indices of the elements of `a.ravel()`
that are non-zero.
See Also
--------
nonzero : Return the indices of the non-zero elements of the input array.
ravel : Return a 1-D array containing the elements of the input array.
Examples
--------
>>> x = np.arange(-2, 3)
>>> x
array([-2, -1, 0, 1, 2])
>>> np.flatnonzero(x)
array([0, 1, 3, 4])
Use the indices of the non-zero elements as an index array to extract
these elements:
>>> x.ravel()[np.flatnonzero(x)]
array([-2, -1, 1, 2])
"""
return a.ravel().nonzero()[0]
示例11: array_str
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def array_str(a, max_line_width=None, precision=None, suppress_small=None):
"""
Return a string representation of the data in an array.
The data in the array is returned as a single string. This function is
similar to `array_repr`, the difference being that `array_repr` also
returns information on the kind of array and its data type.
Parameters
----------
a : ndarray
Input array.
max_line_width : int, optional
Inserts newlines if text is longer than `max_line_width`. The
default is, indirectly, 75.
precision : int, optional
Floating point precision. Default is the current printing precision
(usually 8), which can be altered using `set_printoptions`.
suppress_small : bool, optional
Represent numbers "very close" to zero as zero; default is False.
Very close is defined by precision: if the precision is 8, e.g.,
numbers smaller (in absolute value) than 5e-9 are represented as
zero.
See Also
--------
array2string, array_repr, set_printoptions
Examples
--------
>>> np.array_str(np.arange(3))
'[0 1 2]'
"""
return array2string(a, max_line_width, precision, suppress_small, ' ', "", str)
示例12: identity
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def identity(n, dtype=None):
"""
Return the identity array.
The identity array is a square array with ones on
the main diagonal.
Parameters
----------
n : int
Number of rows (and columns) in `n` x `n` output.
dtype : data-type, optional
Data-type of the output. Defaults to ``float``.
Returns
-------
out : ndarray
`n` x `n` array with its main diagonal set to one,
and all other elements 0.
Examples
--------
>>> np.identity(3)
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
"""
from numpy import eye
return eye(n, dtype=dtype)
示例13: _std
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
keepdims=keepdims)
if isinstance(ret, mu.ndarray):
ret = um.sqrt(ret, out=ret)
else:
ret = ret.dtype.type(um.sqrt(ret))
return ret
示例14: open
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def open(path: str) -> ndarray:
return io.imread(path)
示例15: save_file
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import ndarray [as 别名]
def save_file(processed_image: ndarray, folder_path: str, file_prefix: str):
FileUtil.create_folder(folder_path)
full_destination = FileUtil.generate_next_file_path(folder_path, file_prefix)
io.imsave(full_destination, processed_image)