本文整理汇总了Python中numpy.core.multiarray.dot方法的典型用法代码示例。如果您正苦于以下问题:Python multiarray.dot方法的具体用法?Python multiarray.dot怎么用?Python multiarray.dot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.core.multiarray
的用法示例。
在下文中一共展示了multiarray.dot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: restoredot
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def restoredot():
"""
Restore `dot`, `vdot`, and `innerproduct` to the default non-BLAS
implementations.
Typically, the user will only need to call this when troubleshooting
and installation problem, reproducing the conditions of a build without
an accelerated BLAS, or when being very careful about benchmarking
linear algebra operations.
.. note:: Deprecated in Numpy 1.10
The cblas functions have been integrated into the multarray
module and restoredot now longer does anything. It will be
removed in Numpy 1.11.0.
See Also
--------
alterdot : `restoredot` undoes the effects of `alterdot`.
"""
# 2014-08-13, 1.10
warnings.warn("restoredot no longer does anything.", DeprecationWarning)
示例2: test_dot
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_dot(self):
a = np.array([[1, 0], [0, 1]])
b = np.array([[0, 1], [1, 0]])
c = np.array([[9, 1], [1, -9]])
assert_equal(np.dot(a, b), a.dot(b))
assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c))
# test passing in an output array
c = np.zeros_like(a)
a.dot(b, c)
assert_equal(c, np.dot(a, b))
# test keyword args
c = np.zeros_like(a)
a.dot(b=b, out=c)
assert_equal(c, np.dot(a, b))
示例3: test_dot_3args
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_dot_3args(self):
from numpy.core.multiarray import dot
np.random.seed(22)
f = np.random.random_sample((1024, 16))
v = np.random.random_sample((16, 32))
r = np.empty((1024, 32))
for i in range(12):
dot(f, v, r)
assert_equal(sys.getrefcount(r), 2)
r2 = dot(f, v, out=None)
assert_array_equal(r2, r)
assert_(r is dot(f, v, out=r))
v = v[:, 0].copy() # v.shape == (16,)
r = r[:, 0].copy() # r.shape == (1024,)
r2 = dot(f, v)
assert_(r is dot(f, v, r))
assert_array_equal(r2, r)
示例4: test_dot_override
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_dot_override(self):
class A(object):
def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
return "A"
class B(object):
def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
return NotImplemented
a = A()
b = B()
c = np.array([[1]])
assert_equal(np.dot(a, b), "A")
assert_equal(c.dot(a), "A")
assert_raises(TypeError, np.dot, b, c)
assert_raises(TypeError, c.dot, b)
示例5: alterdot
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def alterdot():
"""
Change `dot`, `vdot`, and `inner` to use accelerated BLAS functions.
Typically, as a user of Numpy, you do not explicitly call this
function. If Numpy is built with an accelerated BLAS, this function is
automatically called when Numpy is imported.
When Numpy is built with an accelerated BLAS like ATLAS, these
functions are replaced to make use of the faster implementations. The
faster implementations only affect float32, float64, complex64, and
complex128 arrays. Furthermore, the BLAS API only includes
matrix-matrix, matrix-vector, and vector-vector products. Products of
arrays with larger dimensionalities use the built in functions and are
not accelerated.
.. note:: Deprecated in Numpy 1.10
The cblas functions have been integrated into the multarray
module and alterdot now longer does anything. It will be
removed in Numpy 1.11.0.
See Also
--------
restoredot : `restoredot` undoes the effects of `alterdot`.
"""
# 2014-08-13, 1.10
warnings.warn("alterdot no longer does anything.", DeprecationWarning)
示例6: test_dot_2args
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_dot_2args(self):
from numpy.core.multiarray import dot
a = np.array([[1, 2], [3, 4]], dtype=float)
b = np.array([[1, 0], [1, 1]], dtype=float)
c = np.array([[3, 2], [7, 4]], dtype=float)
d = dot(a, b)
assert_allclose(c, d)
示例7: test_dot_3args_errors
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_dot_3args_errors(self):
from numpy.core.multiarray import dot
np.random.seed(22)
f = np.random.random_sample((1024, 16))
v = np.random.random_sample((16, 32))
r = np.empty((1024, 31))
assert_raises(ValueError, dot, f, v, r)
r = np.empty((1024,))
assert_raises(ValueError, dot, f, v, r)
r = np.empty((32,))
assert_raises(ValueError, dot, f, v, r)
r = np.empty((32, 1024))
assert_raises(ValueError, dot, f, v, r)
assert_raises(ValueError, dot, f, v, r.T)
r = np.empty((1024, 64))
assert_raises(ValueError, dot, f, v, r[:, ::2])
assert_raises(ValueError, dot, f, v, r[:, :32])
r = np.empty((1024, 32), dtype=np.float32)
assert_raises(ValueError, dot, f, v, r)
r = np.empty((1024, 32), dtype=int)
assert_raises(ValueError, dot, f, v, r)
示例8: test_matmat
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_matmat(self):
A = self.A
c1 = dot(A.transpose(), A)
c2 = dot_(A.transpose(), A)
assert_almost_equal(c1, c2, decimal=self.N)
示例9: test_matvec2
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_matvec2(self):
A, b2 = self.A, self.b2
c1 = dot(A, b2)
c2 = dot_(A, b2)
assert_almost_equal(c1, c2, decimal=self.N)
示例10: test_vecmat
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_vecmat(self):
A, b4 = self.A, self.b4
c1 = dot(b4, A)
c2 = dot_(b4, A)
assert_almost_equal(c1, c2, decimal=self.N)
示例11: test_vecmat2
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_vecmat2(self):
b3, A = self.b3, self.A
c1 = dot(b3, A.transpose())
c2 = dot_(b3, A.transpose())
assert_almost_equal(c1, c2, decimal=self.N)
示例12: test_vecmat3
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_vecmat3(self):
A, b4 = self.A, self.b4
c1 = dot(A.transpose(), b4)
c2 = dot_(A.transpose(), b4)
assert_almost_equal(c1, c2, decimal=self.N)
示例13: test_vecvecouter
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_vecvecouter(self):
b1, b3 = self.b1, self.b3
c1 = dot(b1, b3)
c2 = dot_(b1, b3)
assert_almost_equal(c1, c2, decimal=self.N)
示例14: test_columnvect1
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_columnvect1(self):
b1 = ones((3, 1))
b2 = [5.3]
c1 = dot(b1, b2)
c2 = dot_(b1, b2)
assert_almost_equal(c1, c2, decimal=self.N)
示例15: test_columnvect2
# 需要导入模块: from numpy.core import multiarray [as 别名]
# 或者: from numpy.core.multiarray import dot [as 别名]
def test_columnvect2(self):
b1 = ones((3, 1)).transpose()
b2 = [6.2]
c1 = dot(b2, b1)
c2 = dot_(b2, b1)
assert_almost_equal(c1, c2, decimal=self.N)