本文整理汇总了Python中numpy.core._umath_tests.matrix_multiply方法的典型用法代码示例。如果您正苦于以下问题:Python _umath_tests.matrix_multiply方法的具体用法?Python _umath_tests.matrix_multiply怎么用?Python _umath_tests.matrix_multiply使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.core._umath_tests
的用法示例。
在下文中一共展示了_umath_tests.matrix_multiply方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_signature4
# 需要导入模块: from numpy.core import _umath_tests [as 别名]
# 或者: from numpy.core._umath_tests import matrix_multiply [as 别名]
def test_signature4(self):
# matrix_multiply signature from _umath_tests
enabled, num_dims, ixs, flags, sizes = umt.test_signature(
2, 1, "(n,k),(k,m)->(n,m)")
assert_equal(enabled, 1)
assert_equal(num_dims, (2, 2, 2))
assert_equal(ixs, (0, 1, 1, 2, 0, 2))
assert_equal(flags, (self.size_inferred,)*3)
assert_equal(sizes, (-1, -1, -1))
示例2: test_matrix_multiply_umath_empty
# 需要导入模块: from numpy.core import _umath_tests [as 别名]
# 或者: from numpy.core._umath_tests import matrix_multiply [as 别名]
def test_matrix_multiply_umath_empty(self):
res = umt.matrix_multiply(np.ones((0, 10)), np.ones((10, 0)))
assert_array_equal(res, np.zeros((0, 0)))
res = umt.matrix_multiply(np.ones((10, 0)), np.ones((0, 10)))
assert_array_equal(res, np.zeros((10, 10)))
示例3: test_axis_argument
# 需要导入模块: from numpy.core import _umath_tests [as 别名]
# 或者: from numpy.core._umath_tests import matrix_multiply [as 别名]
def test_axis_argument(self):
# inner1d signature: '(i),(i)->()'
inner1d = umt.inner1d
a = np.arange(27.).reshape((3, 3, 3))
b = np.arange(10., 19.).reshape((3, 1, 3))
c = inner1d(a, b)
assert_array_equal(c, (a * b).sum(-1))
c = inner1d(a, b, axis=-1)
assert_array_equal(c, (a * b).sum(-1))
out = np.zeros_like(c)
d = inner1d(a, b, axis=-1, out=out)
assert_(d is out)
assert_array_equal(d, c)
c = inner1d(a, b, axis=0)
assert_array_equal(c, (a * b).sum(0))
# Sanity checks on innerwt and cumsum.
a = np.arange(6).reshape((2, 3))
b = np.arange(10, 16).reshape((2, 3))
w = np.arange(20, 26).reshape((2, 3))
assert_array_equal(umt.innerwt(a, b, w, axis=0),
np.sum(a * b * w, axis=0))
assert_array_equal(umt.cumsum(a, axis=0), np.cumsum(a, axis=0))
assert_array_equal(umt.cumsum(a, axis=-1), np.cumsum(a, axis=-1))
out = np.empty_like(a)
b = umt.cumsum(a, out=out, axis=0)
assert_(out is b)
assert_array_equal(b, np.cumsum(a, axis=0))
b = umt.cumsum(a, out=out, axis=1)
assert_(out is b)
assert_array_equal(b, np.cumsum(a, axis=-1))
# Check errors.
# Cannot pass in both axis and axes.
assert_raises(TypeError, inner1d, a, b, axis=0, axes=[0, 0])
# Not an integer.
assert_raises(TypeError, inner1d, a, b, axis=[0])
# more than 1 core dimensions.
mm = umt.matrix_multiply
assert_raises(TypeError, mm, a, b, axis=1)
# Output wrong size in axis.
out = np.empty((1, 2, 3), dtype=a.dtype)
assert_raises(ValueError, umt.cumsum, a, out=out, axis=0)
# Regular ufuncs should not accept axis.
assert_raises(TypeError, np.add, 1., 1., axis=0)
示例4: compare_matrix_multiply_results
# 需要导入模块: from numpy.core import _umath_tests [as 别名]
# 或者: from numpy.core._umath_tests import matrix_multiply [as 别名]
def compare_matrix_multiply_results(self, tp):
d1 = np.array(np.random.rand(2, 3, 4), dtype=tp)
d2 = np.array(np.random.rand(2, 3, 4), dtype=tp)
msg = "matrix multiply on type %s" % d1.dtype.name
def permute_n(n):
if n == 1:
return ([0],)
ret = ()
base = permute_n(n-1)
for perm in base:
for i in range(n):
new = perm + [n-1]
new[n-1] = new[i]
new[i] = n-1
ret += (new,)
return ret
def slice_n(n):
if n == 0:
return ((),)
ret = ()
base = slice_n(n-1)
for sl in base:
ret += (sl+(slice(None),),)
ret += (sl+(slice(0, 1),),)
return ret
def broadcastable(s1, s2):
return s1 == s2 or s1 == 1 or s2 == 1
permute_3 = permute_n(3)
slice_3 = slice_n(3) + ((slice(None, None, -1),)*3,)
ref = True
for p1 in permute_3:
for p2 in permute_3:
for s1 in slice_3:
for s2 in slice_3:
a1 = d1.transpose(p1)[s1]
a2 = d2.transpose(p2)[s2]
ref = ref and a1.base is not None
ref = ref and a2.base is not None
if (a1.shape[-1] == a2.shape[-2] and
broadcastable(a1.shape[0], a2.shape[0])):
assert_array_almost_equal(
umt.matrix_multiply(a1, a2),
np.sum(a2[..., np.newaxis].swapaxes(-3, -1) *
a1[..., np.newaxis,:], axis=-1),
err_msg=msg + ' %s %s' % (str(a1.shape),
str(a2.shape)))
assert_equal(ref, True, err_msg="reference check")