本文整理汇总了Python中numpy.complex64方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.complex64方法的具体用法?Python numpy.complex64怎么用?Python numpy.complex64使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.complex64方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_scipy_gmres_linop_parameter
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def test_scipy_gmres_linop_parameter(self):
""" This is a test on gmres method with a parameter-dependent linear operator """
for omega in np.linspace(-10.0, 10.0, 10):
for eps in np.linspace(-10.0, 10.0, 10):
linop_param = linalg.aslinearoperator(vext2veff_c(omega, eps, n))
Aparam = np.zeros((n,n), np.complex64)
for i in range(n):
uv = np.zeros(n, np.complex64); uv[i] = 1.0
Aparam[:,i] = linop_param.matvec(uv)
x_ref = np.dot(inv(Aparam), b)
x_itr,info = linalg.lgmres(linop_param, b)
derr = abs(x_ref-x_itr).sum()/x_ref.size
self.assertLess(derr, 1e-6)
示例2: test_basic
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def test_basic(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
np.uint32, np.float32, np.float64, np.complex64,
np.complex128]:
a = np.array(ba, ctype)
a2 = np.array(ba2, ctype)
tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
assert_array_equal(np.cumsum(a, axis=0), tgt)
tgt = np.array(
[[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
assert_array_equal(np.cumsum(a2, axis=0), tgt)
tgt = np.array(
[[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
assert_array_equal(np.cumsum(a2, axis=1), tgt)
示例3: test_0_size
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.eigvals(a)
assert_(res.dtype.type is np.float64)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.eigvals(a)
assert_(res.dtype.type is np.complex64)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
示例4: test_branch_cuts_complex64
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
_check_branch_cut(np.log, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log2, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
_check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
_check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
# check against bogus branch cuts: assert continuity between quadrants
_check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64)
_check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64)
_check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64)
示例5: test_zero_division
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def test_zero_division(self):
with np.errstate(all="ignore"):
for t in [np.complex64, np.complex128]:
a = t(0.0)
b = t(1.0)
assert_(np.isinf(b/a))
b = t(complex(np.inf, np.inf))
assert_(np.isinf(b/a))
b = t(complex(np.inf, np.nan))
assert_(np.isinf(b/a))
b = t(complex(np.nan, np.inf))
assert_(np.isinf(b/a))
b = t(complex(np.nan, np.nan))
assert_(np.isnan(b/a))
b = t(0.)
assert_(np.isnan(b/a))
示例6: test_signed_zeros
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def test_signed_zeros(self):
with np.errstate(all="ignore"):
for t in [np.complex64, np.complex128]:
# tupled (numerator, denominator, expected)
# for testing as expected == numerator/denominator
data = (
(( 0.0,-1.0), ( 0.0, 1.0), (-1.0,-0.0)),
(( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)),
(( 0.0,-1.0), (-0.0,-1.0), ( 1.0, 0.0)),
(( 0.0,-1.0), (-0.0, 1.0), (-1.0, 0.0)),
(( 0.0, 1.0), ( 0.0,-1.0), (-1.0, 0.0)),
(( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)),
((-0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)),
((-0.0, 1.0), ( 0.0,-1.0), (-1.0,-0.0))
)
for cases in data:
n = cases[0]
d = cases[1]
ex = cases[2]
result = t(complex(n[0], n[1])) / t(complex(d[0], d[1]))
# check real and imag parts separately to avoid comparison
# in array context, which does not account for signed zeros
assert_equal(result.real, ex[0])
assert_equal(result.imag, ex[1])
示例7: zero_if_close
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def zero_if_close(a, tol=1.e-15):
"""set real and/or imaginary part to 0 if their absolute value is smaller than `tol`.
Parameters
----------
a : ndarray
numpy array to be rounded
tol : float
the threashold which values to consider as '0'.
"""
if a.dtype == np.complex128 or a.dtype == np.complex64:
ar = np.choose(np.abs(a.real) < tol, [a.real, np.zeros(a.shape)])
ai = np.choose(np.abs(a.imag) < tol, [a.imag, np.zeros(a.shape)])
return ar + 1j * ai
else:
return np.choose(np.abs(a) < tol, [a, np.zeros_like(a)])
示例8: _get_output_fourier
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def _get_output_fourier(output, input):
if output is None:
if input.dtype.type in [numpy.complex64, numpy.complex128,
numpy.float32]:
output = numpy.zeros(input.shape, dtype=input.dtype)
else:
output = numpy.zeros(input.shape, dtype=numpy.float64)
return_value = output
elif type(output) is type:
if output not in [numpy.complex64, numpy.complex128,
numpy.float32, numpy.float64]:
raise RuntimeError("output type not supported")
output = numpy.zeros(input.shape, dtype=output)
return_value = output
else:
if output.shape != input.shape:
raise RuntimeError("output shape not correct")
return_value = None
return output, return_value
示例9: assert_no_overwrite
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def assert_no_overwrite(call, shapes, dtypes=None):
"""
Test that a call does not overwrite its input arguments
"""
if dtypes is None:
dtypes = [np.float32, np.float64, np.complex64, np.complex128]
for dtype in dtypes:
for order in ["C", "F"]:
for faker in [_id, _FakeMatrix, _FakeMatrix2]:
orig_inputs = [_get_array(s, dtype) for s in shapes]
inputs = [faker(x.copy(order)) for x in orig_inputs]
call(*inputs)
msg = "call modified inputs [%r, %r]" % (dtype, faker)
for a, b in zip(inputs, orig_inputs):
np.testing.assert_equal(a, b, err_msg=msg)
示例10: min
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def min(self):
"""Returns the minimum representable value in this data type.
Raises:
TypeError: if this is a non-numeric, unordered, or quantized type.
"""
if (self.is_quantized or self.base_dtype in
(bool, string, complex64, complex128)):
raise TypeError("Cannot find minimum value of %s." % self)
# there is no simple way to get the min value of a dtype, we have to check
# float and int types separately
try:
return np.finfo(self.as_numpy_dtype()).min
except: # bare except as possible raises by finfo not documented
try:
return np.iinfo(self.as_numpy_dtype()).min
except:
raise TypeError("Cannot find minimum value of %s." % self)
示例11: max
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def max(self):
"""Returns the maximum representable value in this data type.
Raises:
TypeError: if this is a non-numeric, unordered, or quantized type.
"""
if (self.is_quantized or self.base_dtype in
(bool, string, complex64, complex128)):
raise TypeError("Cannot find maximum value of %s." % self)
# there is no simple way to get the max value of a dtype, we have to check
# float and int types separately
try:
return np.finfo(self.as_numpy_dtype()).max
except: # bare except as possible raises by finfo not documented
try:
return np.iinfo(self.as_numpy_dtype()).max
except:
raise TypeError("Cannot find maximum value of %s." % self)
示例12: test_basic
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def test_basic(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
np.uint32, np.float32, np.float64, np.complex64, np.complex128]:
a = np.array(ba, ctype)
a2 = np.array(ba2, ctype)
tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
assert_array_equal(np.cumsum(a, axis=0), tgt)
tgt = np.array(
[[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
assert_array_equal(np.cumsum(a2, axis=0), tgt)
tgt = np.array(
[[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
assert_array_equal(np.cumsum(a2, axis=1), tgt)
示例13: test_shuffle
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def test_shuffle(self):
# Test lists, arrays (of various dtypes), and multidimensional versions
# of both, c-contiguous or not:
for conv in [lambda x: np.array([]),
lambda x: x,
lambda x: np.asarray(x).astype(np.int8),
lambda x: np.asarray(x).astype(np.float32),
lambda x: np.asarray(x).astype(np.complex64),
lambda x: np.asarray(x).astype(object),
lambda x: [(i, i) for i in x],
lambda x: np.asarray([[i, i] for i in x]),
lambda x: np.vstack([x, x]).T,
# gh-4270
lambda x: np.asarray([(i, i) for i in x],
[("a", object, 1),
("b", np.int32, 1)])]:
np.random.seed(self.seed)
alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
np.random.shuffle(alist)
actual = alist
desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
np.testing.assert_array_equal(actual, desired)
示例14: __stream_to_complex
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def __stream_to_complex(self, stream):
bytes_np = numpy.ctypeslib.as_array(stream)
iq = bytes_np.astype(numpy.float32).view(numpy.complex64)
iq /= 255 / 2
iq -= 1 + 1j
return iq
示例15: __on_freq
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import complex64 [as 别名]
def __on_freq(self, freq):
_l, freqs = psd(numpy.zeros(2, dtype=numpy.complex64),
BINS, SAMPLE_RATE)
freqs /= 1e6
freqs += freq
self._freqs = freqs.tolist()
if self._receive is not None:
self._receive.set_frequency(freq)