当前位置: 首页>>代码示例>>Python>>正文


Python compat.integer_types方法代码示例

本文整理汇总了Python中numpy.compat.integer_types方法的典型用法代码示例。如果您正苦于以下问题:Python compat.integer_types方法的具体用法?Python compat.integer_types怎么用?Python compat.integer_types使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.compat的用法示例。


在下文中一共展示了compat.integer_types方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_equal_to_original

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def test_equal_to_original(self):
        """ Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """
        from numpy.compat import integer_types
        from numpy.core import asarray, concatenate, arange, take

        def original_fftshift(x, axes=None):
            """ How fftshift was implemented in v1.14"""
            tmp = asarray(x)
            ndim = tmp.ndim
            if axes is None:
                axes = list(range(ndim))
            elif isinstance(axes, integer_types):
                axes = (axes,)
            y = tmp
            for k in axes:
                n = tmp.shape[k]
                p2 = (n + 1) // 2
                mylist = concatenate((arange(p2, n), arange(p2)))
                y = take(y, mylist, k)
            return y

        def original_ifftshift(x, axes=None):
            """ How ifftshift was implemented in v1.14 """
            tmp = asarray(x)
            ndim = tmp.ndim
            if axes is None:
                axes = list(range(ndim))
            elif isinstance(axes, integer_types):
                axes = (axes,)
            y = tmp
            for k in axes:
                n = tmp.shape[k]
                p2 = n - (n + 1) // 2
                mylist = concatenate((arange(p2, n), arange(p2)))
                y = take(y, mylist, k)
            return y

        # create possible 2d array combinations and try all possible keywords
        # compare output to original functions
        for i in range(16):
            for j in range(16):
                for axes_keyword in [0, 1, None, (0,), (0, 1)]:
                    inp = np.random.rand(i, j)

                    assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
                                              original_fftshift(inp, axes_keyword))

                    assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
                                              original_ifftshift(inp, axes_keyword)) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:51,代码来源:test_helper.py

示例2: fftshift

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def fftshift(x, axes=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half-spaces for all axes listed (defaults to all).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to shift.  Default is None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    ifftshift : The inverse of `fftshift`.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(10, 0.1)
    >>> freqs
    array([ 0.,  1.,  2.,  3.,  4., -5., -4., -3., -2., -1.])
    >>> np.fft.fftshift(freqs)
    array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])

    Shift the zero-frequency component only along the second axis:

    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.fftshift(freqs, axes=(1,))
    array([[ 2.,  0.,  1.],
           [-4.,  3.,  4.],
           [-1., -3., -2.]])

    """
    x = asarray(x)
    if axes is None:
        axes = tuple(range(x.ndim))
        shift = [dim // 2 for dim in x.shape]
    elif isinstance(axes, integer_types):
        shift = x.shape[axes] // 2
    else:
        shift = [x.shape[ax] // 2 for ax in axes]

    return roll(x, shift, axes) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:56,代码来源:helper.py

示例3: ifftshift

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def ifftshift(x, axes=None):
    """
    The inverse of `fftshift`. Although identical for even-length `x`, the
    functions differ by one sample for odd-length `x`.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    fftshift : Shift zero-frequency component to the center of the spectrum.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.ifftshift(np.fft.fftshift(freqs))
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])

    """
    x = asarray(x)
    if axes is None:
        axes = tuple(range(x.ndim))
        shift = [-(dim // 2) for dim in x.shape]
    elif isinstance(axes, integer_types):
        shift = -(x.shape[axes] // 2)
    else:
        shift = [-(x.shape[ax] // 2) for ax in axes]

    return roll(x, shift, axes) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:46,代码来源:helper.py

示例4: fftfreq

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def fftfreq(n, d=1.0):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.

    Returns
    -------
    f : ndarray
        Array of length `n` containing the sample frequencies.

    Examples
    --------
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
    >>> fourier = np.fft.fft(signal)
    >>> n = signal.size
    >>> timestep = 0.1
    >>> freq = np.fft.fftfreq(n, d=timestep)
    >>> freq
    array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])

    """
    if not isinstance(n, integer_types):
        raise ValueError("n should be an integer")
    val = 1.0 / (n * d)
    results = empty(n, int)
    N = (n-1)//2 + 1
    p1 = arange(0, N, dtype=int)
    results[:N] = p1
    p2 = arange(-(n//2), 0, dtype=int)
    results[N:] = p2
    return results * val 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:48,代码来源:helper.py

示例5: rfftfreq

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def rfftfreq(n, d=1.0):
    """
    Return the Discrete Fourier Transform sample frequencies
    (for usage with rfft, irfft).

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
    the Nyquist frequency component is considered to be positive.

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.

    Returns
    -------
    f : ndarray
        Array of length ``n//2 + 1`` containing the sample frequencies.

    Examples
    --------
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
    >>> fourier = np.fft.rfft(signal)
    >>> n = signal.size
    >>> sample_rate = 100
    >>> freq = np.fft.fftfreq(n, d=1./sample_rate)
    >>> freq
    array([  0.,  10.,  20.,  30.,  40., -50., -40., -30., -20., -10.])
    >>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
    >>> freq
    array([  0.,  10.,  20.,  30.,  40.,  50.])

    """
    if not isinstance(n, integer_types):
        raise ValueError("n should be an integer")
    val = 1.0/(n*d)
    N = n//2 + 1
    results = arange(0, N, dtype=int)
    return results * val 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:51,代码来源:helper.py

示例6: fftfreq

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def fftfreq(n, d=1.0):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given a window length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Parameters
    ----------
    n : int
        Window length.
    d : scalar, optional
        Sample spacing (inverse of the sampling rate). Defaults to 1.

    Returns
    -------
    f : ndarray
        Array of length `n` containing the sample frequencies.

    Examples
    --------
    >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
    >>> fourier = np.fft.fft(signal)
    >>> n = signal.size
    >>> timestep = 0.1
    >>> freq = np.fft.fftfreq(n, d=timestep)
    >>> freq
    array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])

    """
    if not isinstance(n, integer_types):
        raise ValueError("n should be an integer")
    val = 1.0 / (n * d)
    results = empty(n, int)
    N = (n-1)//2 + 1
    p1 = arange(0, N, dtype=int)
    results[:N] = p1
    p2 = arange(-(n//2), 0, dtype=int)
    results[N:] = p2
    return results * val
    #return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:49,代码来源:helper.py

示例7: fftshift

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def fftshift(x, axes=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half-spaces for all axes listed (defaults to all).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to shift.  Default is None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    ifftshift : The inverse of `fftshift`.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(10, 0.1)
    >>> freqs
    array([ 0.,  1.,  2.,  3.,  4., -5., -4., -3., -2., -1.])
    >>> np.fft.fftshift(freqs)
    array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])

    Shift the zero-frequency component only along the second axis:

    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.fftshift(freqs, axes=(1,))
    array([[ 2.,  0.,  1.],
           [-4.,  3.,  4.],
           [-1., -3., -2.]])

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = list(range(ndim))
    elif isinstance(axes, integer_types):
        axes = (axes,)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = (n+1)//2
        mylist = concatenate((arange(p2, n), arange(p2)))
        y = take(y, mylist, k)
    return y 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:59,代码来源:helper.py

示例8: ifftshift

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def ifftshift(x, axes=None):
    """
    The inverse of `fftshift`. Although identical for even-length `x`, the
    functions differ by one sample for odd-length `x`.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    fftshift : Shift zero-frequency component to the center of the spectrum.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.ifftshift(np.fft.fftshift(freqs))
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = list(range(ndim))
    elif isinstance(axes, integer_types):
        axes = (axes,)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = n-(n+1)//2
        mylist = concatenate((arange(p2, n), arange(p2)))
        y = take(y, mylist, k)
    return y 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:49,代码来源:helper.py

示例9: fftshift

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def fftshift(x, axes=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half-spaces for all axes listed (defaults to all).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to shift.  Default is None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    ifftshift : The inverse of `fftshift`.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(10, 0.1)
    >>> freqs
    array([ 0.,  1.,  2.,  3.,  4., -5., -4., -3., -2., -1.])
    >>> np.fft.fftshift(freqs)
    array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])

    Shift the zero-frequency component only along the second axis:

    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.fftshift(freqs, axes=(1,))
    array([[ 2.,  0.,  1.],
           [-4.,  3.,  4.],
           [-1., -3., -2.]])

    """
    tmp = asarray(x)
    ndim = tmp.ndim
    if axes is None:
        axes = list(range(ndim))
    elif isinstance(axes, integer_types):
        axes = (axes,)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = (n+1)//2
        mylist = concatenate((arange(p2, n), arange(p2)))
        y = take(y, mylist, k)
    return y 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:59,代码来源:helper.py

示例10: ifftshift

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def ifftshift(x, axes=None):
    """
    The inverse of `fftshift`. Although identical for even-length `x`, the
    functions differ by one sample for odd-length `x`.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    fftshift : Shift zero-frequency component to the center of the spectrum.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.ifftshift(np.fft.fftshift(freqs))
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])

    """
    tmp = asarray(x)
    ndim = tmp.ndim
    if axes is None:
        axes = list(range(ndim))
    elif isinstance(axes, integer_types):
        axes = (axes,)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = n-(n+1)//2
        mylist = concatenate((arange(p2, n), arange(p2)))
        y = take(y, mylist, k)
    return y 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:49,代码来源:helper.py

示例11: ifftshift

# 需要导入模块: from numpy import compat [as 别名]
# 或者: from numpy.compat import integer_types [as 别名]
def ifftshift(x, axes=None):
    """
    The inverse of fftshift.

    Parameters
    ----------
    x : array_like
        Input array.
    axes : int or shape tuple, optional
        Axes over which to calculate.  Defaults to None, which shifts all axes.

    Returns
    -------
    y : ndarray
        The shifted array.

    See Also
    --------
    fftshift : Shift zero-frequency component to the center of the spectrum.

    Examples
    --------
    >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
    >>> freqs
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])
    >>> np.fft.ifftshift(np.fft.fftshift(freqs))
    array([[ 0.,  1.,  2.],
           [ 3.,  4., -4.],
           [-3., -2., -1.]])

    """
    tmp = asarray(x)
    ndim = len(tmp.shape)
    if axes is None:
        axes = list(range(ndim))
    elif isinstance(axes, integer_types):
        axes = (axes,)
    y = tmp
    for k in axes:
        n = tmp.shape[k]
        p2 = n-(n+1)//2
        mylist = concatenate((arange(p2, n), arange(p2)))
        y = take(y, mylist, k)
    return y 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:48,代码来源:helper.py


注:本文中的numpy.compat.integer_types方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。