本文整理汇总了Python中numpy.column_stack方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.column_stack方法的具体用法?Python numpy.column_stack怎么用?Python numpy.column_stack使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.column_stack方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def update(self, labels, preds):
"""Updates the internal evaluation result.
Parameters
----------
labels : list of `NDArray`
The labels of the data.
preds : list of `NDArray`
Predicted values.
"""
mx.metric.check_label_shapes(labels, preds)
for label, pred in zip(labels, preds):
label = label.asnumpy()
pred = pred.asnumpy()
pred = np.column_stack((1 - pred, pred))
label = label.ravel()
num_examples = pred.shape[0]
assert label.shape[0] == num_examples, (label.shape[0], num_examples)
prob = pred[np.arange(num_examples, dtype=np.int64), np.int64(label)]
self.sum_metric += (-np.log(prob + self.eps)).sum()
self.num_inst += num_examples
示例2: _positional_to_optimal
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def _positional_to_optimal(self, K):
k, l = self.k, self.l
suffix = np.full((len(K), self.l), 0.0)
X = np.column_stack([K, suffix])
X[:, self.k + self.l - 1] = 0.35
for i in range(self.k + self.l - 2, self.k - 1, -1):
m = X[:, i + 1:k + l]
val = m.sum(axis=1) / m.shape[1]
X[:, i] = 0.35 ** ((0.02 + 1.96 * val) ** -1)
ret = X * (2 * (np.arange(self.n_var) + 1))
return ret
# ---------------------------------------------------------------------------------------------------------
# TRANSFORMATIONS
# ---------------------------------------------------------------------------------------------------------
示例3: _evaluate
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def _evaluate(self, x, out, *args, **kwargs):
# variable names for convenient access
x1 = x[:, 0]
x2 = x[:, 1]
y = x[:, 2]
# first objectives
f1 = x1 * anp.sqrt(16 + anp.square(y)) + x2 * anp.sqrt((1 + anp.square(y)))
# measure which are needed for the second objective
sigma_ac = 20 * anp.sqrt(16 + anp.square(y)) / (y * x1)
sigma_bc = 80 * anp.sqrt(1 + anp.square(y)) / (y * x2)
# take the max
f2 = anp.max(anp.column_stack((sigma_ac, sigma_bc)), axis=1)
# define a constraint
g1 = f2 - self.Smax
out["F"] = anp.column_stack([f1, f2])
out["G"] = g1
示例4: _do
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def _do(self, problem, X, **kwargs):
# get the X of parents and count the matings
_, n_matings, n_var = X.shape
# start point of crossover
r = np.row_stack([np.random.permutation(n_var - 1) + 1 for _ in range(n_matings)])[:, :self.n_points]
r.sort(axis=1)
r = np.column_stack([r, np.full(n_matings, n_var)])
# the mask do to the crossover
M = np.full((n_matings, n_var), False)
# create for each individual the crossover range
for i in range(n_matings):
j = 0
while j < r.shape[1] - 1:
a, b = r[i, j], r[i, j + 1]
M[i, a:b] = True
j += 2
_X = crossover_mask(X, M)
return _X
示例5: geometric_mean_var
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def geometric_mean_var(z):
for row in np.eye(z.shape[1]):
if not np.any(np.all(row == z, axis=1)):
z = np.row_stack([z, row])
n_points, n_dim = z.shape
D = vectorized_cdist(z, z)
np.fill_diagonal(D, np.inf)
k = n_dim - 1
I = D.argsort(axis=1)[:, :k]
first = np.column_stack([np.arange(n_points) for _ in range(k)])
val = gmean(D[first, I], axis=1)
return val.var()
示例6: mean_mean
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def mean_mean(z):
for row in np.eye(z.shape[1]):
if not np.any(np.all(row == z, axis=1)):
z = np.row_stack([z, row])
n_points, n_dim = z.shape
D = vectorized_cdist(z, z)
np.fill_diagonal(D, np.inf)
k = n_dim - 1
I = D.argsort(axis=1)[:, :k]
first = np.column_stack([np.arange(n_points) for _ in range(k)])
val = np.mean(D[first, I], axis=1)
return val.mean()
示例7: map_onto_unit_simplex
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def map_onto_unit_simplex(rnd, method):
n_points, n_dim = rnd.shape
if method == "sum":
ret = rnd / rnd.sum(axis=1)[:, None]
elif method == "kraemer":
M = sys.maxsize
rnd *= M
rnd = rnd[:, :n_dim - 1]
rnd = np.column_stack([np.zeros(n_points), rnd, np.full(n_points, M)])
rnd = np.sort(rnd, axis=1)
ret = np.full((n_points, n_dim), np.nan)
for i in range(1, n_dim + 1):
ret[:, i - 1] = rnd[:, i] - rnd[:, i - 1]
ret /= M
else:
raise Exception("Invalid unit simplex mapping!")
return ret
示例8: _evaluate
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def _evaluate(self, x, out, *args, **kwargs):
f1 = x[:, 0]
c = np.sum(x[:, 1:], axis=1)
g = 1.0 + 9.0 * c / (self.n_var - 1)
f2 = g * (1 - np.power(f1 * 1.0 / g, 0.5) - (f1 * 1.0 / g) * np.sin(10 * np.pi * f1))
out["F"] = np.column_stack([f1, f2])
if "dF" in out:
dF = np.zeros([x.shape[0], self.n_obj, self.n_var], dtype=np.float)
dF[:, 0, 0], dF[:, 0, 1:] = 1, 0
dF[:, 1, 0] = -0.5 * np.sqrt(g / x[:, 0]) - np.sin(10 * np.pi * x[:, 0]) - 10 * np.pi * x[:, 0] * np.cos(
10 * np.pi * x[:, 0])
dF[:, 1, 1:] = (9 / (self.n_var - 1)) * (1 - 0.5 * np.sqrt(x[:, 0] / g))[:, None]
out["dF"] = dF
示例9: SaveYML
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def SaveYML(w_um, RefInd, filename, references='', comments=''):
header = np.empty(9, dtype=object)
header[0] = '# this file is part of refractiveindex.info database'
header[1] = '# refractiveindex.info database is in the public domain'
header[2] = '# copyright and related rights waived via CC0 1.0'
header[3] = ''
header[4] = 'REFERENCES:' + references
header[5] = 'COMMENTS:' + comments
header[6] = 'DATA:'
header[7] = ' - type: tabulated nk'
header[8] = ' data: |'
export = np.column_stack((w_um, np.real(RefInd), np.imag(RefInd)))
np.savetxt(filename, export, fmt='%4.2f %#.4g %#.4g', delimiter=' ', header='\n'.join(header), comments='',newline='\n ')
return
###############################################################################
## Wavelengths to sample ##
示例10: SaveYML
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def SaveYML(w_um, RefInd, filename, references='', comments=''):
header = np.empty(9, dtype=object)
header[0] = '# this file is part of refractiveindex.info database'
header[1] = '# refractiveindex.info database is in the public domain'
header[2] = '# copyright and related rights waived via CC0 1.0'
header[3] = ''
header[4] = 'REFERENCES:' + references
header[5] = 'COMMENTS:' + comments
header[6] = 'DATA:'
header[7] = ' - type: tabulated nk'
header[8] = ' data: |'
export = np.column_stack((w_um, np.real(RefInd), np.imag(RefInd)))
np.savetxt(filename, export, fmt='%4.2f %#.4g %#.3e', delimiter=' ', header='\n'.join(header), comments='',newline='\n ')
return
###############################################################################
## Wavelengths to sample ##
示例11: SaveYML
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def SaveYML(w_um, RefInd, filename, references='', comments=''):
header = np.empty(9, dtype=object)
header[0] = '# this file is part of refractiveindex.info database'
header[1] = '# refractiveindex.info database is in the public domain'
header[2] = '# copyright and related rights waived via CC0 1.0'
header[3] = ''
header[4] = 'REFERENCES:' + references
header[5] = 'COMMENTS:' + comments
header[6] = 'DATA:'
header[7] = ' - type: tabulated nk'
header[8] = ' data: |'
export = np.column_stack((w_um, np.real(RefInd), np.imag(RefInd)))
np.savetxt(filename, export, fmt='%4.3f %#.4g %#.3e', delimiter=' ', header='\n'.join(header), comments='',newline='\n ')
return
###############################################################################
## Wavelengths to sample ##
示例12: fit
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def fit(self, magnitude, time, dt_bins, dm_bins):
def delta_calc(idx):
t0 = time[idx]
m0 = magnitude[idx]
deltat = time[idx + 1 :] - t0
deltam = magnitude[idx + 1 :] - m0
deltat[np.where(deltat < 0)] *= -1
deltam[np.where(deltat < 0)] *= -1
return np.column_stack((deltat, deltam))
lc_len = len(time)
n_vals = int(0.5 * lc_len * (lc_len - 1))
deltas = np.vstack(tuple(delta_calc(idx) for idx in range(lc_len - 1)))
deltat = deltas[:, 0]
deltam = deltas[:, 1]
bins = [dt_bins, dm_bins]
counts = np.histogram2d(deltat, deltam, bins=bins, normed=False)[0]
result = np.fix(255.0 * counts / n_vals + 0.999).astype(int)
return {"DMDT": result}
示例13: calc_axon_contribution
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def calc_axon_contribution(self, axons):
xyret = np.column_stack((self.grid.xret.ravel(),
self.grid.yret.ravel()))
# Only include axon segments that are < `max_d2` from the soma. These
# axon segments will have `sensitivity` > `self.min_ax_sensitivity`:
max_d2 = -2.0 * self.axlambda ** 2 * np.log(self.min_ax_sensitivity)
axon_contrib = []
for xy, bundle in zip(xyret, axons):
idx = np.argmin((bundle[:, 0] - xy[0]) ** 2 +
(bundle[:, 1] - xy[1]) ** 2)
# Cut off the part of the fiber that goes beyond the soma:
axon = np.flipud(bundle[0: idx + 1, :])
# Add the exact location of the soma:
axon = np.insert(axon, 0, xy, axis=0)
# For every axon segment, calculate distance from soma by
# summing up the individual distances between neighboring axon
# segments (by "walking along the axon"):
d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 +
np.diff(axon[:, 1], axis=0) ** 2)
idx_d2 = d2 < max_d2
sensitivity = np.exp(-d2[idx_d2] / (2.0 * self.axlambda ** 2))
idx_d2 = np.insert(idx_d2, 0, False)
contrib = np.column_stack((axon[idx_d2, :], sensitivity))
axon_contrib.append(contrib)
return axon_contrib
示例14: test_AxonMapModel_calc_axon_contribution
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def test_AxonMapModel_calc_axon_contribution(engine):
model = AxonMapModel(xystep=2, engine=engine, n_axons=10,
xrange=(-20, 20), yrange=(-15, 15),
axons_range=(-30, 30))
model.build()
xyret = np.column_stack((model.spatial.grid.xret.ravel(),
model.spatial.grid.yret.ravel()))
bundles = model.spatial.grow_axon_bundles()
axons = model.spatial.find_closest_axon(bundles)
contrib = model.spatial.calc_axon_contribution(axons)
# Check lambda math:
for ax, xy in zip(contrib, xyret):
axon = np.insert(ax, 0, list(xy) + [0], axis=0)
d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 +
np.diff(axon[:, 1], axis=0) ** 2)
sensitivity = np.exp(-d2 / (2.0 * model.spatial.axlambda ** 2))
npt.assert_almost_equal(sensitivity, ax[:, 2])
示例15: store_transition
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import column_stack [as 别名]
def store_transition(self, s, a, r, s_):
if not hasattr(self, 'memory_counter'):
self.memory_counter = 0
#print(s,s_.size)
s=s.reshape(-1)
s_=s_.reshape(-1)
transition = np.hstack((s, [a, r], s_))
#transition = np.column_stack((s, [a, r], s_))
#transition = np.concatenate((s, [a, r], s_), axis=1)
#transition = scipy.sparse.hstack([s, [a, r], s_]).toarray()
# replace the old memory with new memory
index = self.memory_counter % self.memory_size
self.memory[index, :] = transition
self.memory_counter += 1