本文整理汇总了Python中numpy.clip方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.clip方法的具体用法?Python numpy.clip怎么用?Python numpy.clip使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.clip方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: draw_heatmap
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def draw_heatmap(img, heatmap, alpha=0.5):
"""Draw a heatmap overlay over an image."""
assert len(heatmap.shape) == 2 or \
(len(heatmap.shape) == 3 and heatmap.shape[2] == 1)
assert img.dtype in [np.uint8, np.int32, np.int64]
assert heatmap.dtype in [np.float32, np.float64]
if img.shape[0:2] != heatmap.shape[0:2]:
heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
heatmap_rs = ia.imresize_single_image(
heatmap_rs[..., np.newaxis],
img.shape[0:2],
interpolation="nearest"
)
heatmap = np.squeeze(heatmap_rs) / 255.0
cmap = plt.get_cmap('jet')
heatmap_cmapped = cmap(heatmap)
heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
heatmap_cmapped = heatmap_cmapped * 255
mix = (1-alpha) * img + alpha * heatmap_cmapped
mix = np.clip(mix, 0, 255).astype(np.uint8)
return mix
示例2: add_image
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def add_image(self, img):
if self.print_progress and self.cur_images % self.progress_interval == 0:
print('%d / %d\r' % (self.cur_images, self.expected_images), end='', flush=True)
sys.stdout.flush()
if self.shape is None:
self.shape = img.shape
self.resolution_log2 = int(np.log2(self.shape[1]))
assert self.shape[0] in [1, 3]
assert self.shape[1] == self.shape[2]
assert self.shape[1] == 2**self.resolution_log2
tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE)
for lod in range(self.resolution_log2 - 1):
tfr_file = self.tfr_prefix + '-r%02d.tfrecords' % (self.resolution_log2 - lod)
self.tfr_writers.append(tf.python_io.TFRecordWriter(tfr_file, tfr_opt))
assert img.shape == self.shape
for lod, tfr_writer in enumerate(self.tfr_writers):
if lod:
img = img.astype(np.float32)
img = (img[:, 0::2, 0::2] + img[:, 0::2, 1::2] + img[:, 1::2, 0::2] + img[:, 1::2, 1::2]) * 0.25
quant = np.rint(img).clip(0, 255).astype(np.uint8)
ex = tf.train.Example(features=tf.train.Features(feature={
'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=quant.shape)),
'data': tf.train.Feature(bytes_list=tf.train.BytesList(value=[quant.tostring()]))}))
tfr_writer.write(ex.SerializeToString())
self.cur_images += 1
示例3: crop
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def crop(self, bbox):
"""See :func:`BaseInstanceMasks.crop`."""
assert isinstance(bbox, np.ndarray)
assert bbox.ndim == 1
# clip the boundary
bbox = bbox.copy()
bbox[0::2] = np.clip(bbox[0::2], 0, self.width)
bbox[1::2] = np.clip(bbox[1::2], 0, self.height)
x1, y1, x2, y2 = bbox
w = np.maximum(x2 - x1, 1)
h = np.maximum(y2 - y1, 1)
if len(self.masks) == 0:
cropped_masks = np.empty((0, h, w), dtype=np.uint8)
else:
cropped_masks = self.masks[:, y1:y1 + h, x1:x1 + w]
return BitmapMasks(cropped_masks, h, w)
示例4: perturb
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def perturb(self, x_nat, y, sess):
"""Given a set of examples (x_nat, y), returns a set of adversarial
examples within epsilon of x_nat in l_infinity norm."""
if self.rand:
x = x_nat + np.random.uniform(-self.epsilon, self.epsilon, x_nat.shape)
else:
x = np.copy(x_nat)
for i in range(self.k):
grad = sess.run(self.grad, feed_dict={self.model.x_input: x,
self.model.y_input: y})
x += self.a * np.sign(grad)
x = np.clip(x, x_nat - self.epsilon, x_nat + self.epsilon)
x = np.clip(x, 0, 1) # ensure valid pixel range
return x
示例5: cleverhans_attack_wrapper
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def cleverhans_attack_wrapper(cleverhans_attack_fn, reset=True):
def attack(a):
session = tf.Session()
with session.as_default():
model = RVBCleverhansModel(a)
adversarial_image = cleverhans_attack_fn(model, session, a)
adversarial_image = np.squeeze(adversarial_image, axis=0)
if reset:
# optionally, reset to ignore other adversarials
# found during the search
a._reset()
# run predictions to make sure the returned adversarial
# is taken into account
min_, max_ = a.bounds()
adversarial_image = np.clip(adversarial_image, min_, max_)
a.predictions(adversarial_image)
return attack
示例6: Chainer2PIL
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def Chainer2PIL(data, rescale=True):
data = np.array(data)
if rescale:
data *= 256
# data += 128
if data.dtype != np.uint8:
data = np.clip(data, 0, 255)
data = data.astype(np.uint8)
if data.shape[0] == 1:
buf = data.astype(np.uint8).reshape((data.shape[1], data.shape[2]))
else:
buf = np.zeros((data.shape[1], data.shape[2], data.shape[0]), dtype=np.uint8)
for i in range(3):
a = data[i,:,:]
buf[:,:,i] = a
img = Image.fromarray(buf)
return img
示例7: wave2input_image
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def wave2input_image(wave, window, pos=0, pad=0):
wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254]
wave_image *= window
spectrum_image = np.fft.fft(wave_image, axis=1)
input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32)
np.clip(input_image, 1000, None, out=input_image)
np.log(input_image, out=input_image)
input_image += bias
input_image /= scale
if np.max(input_image) > 0.95:
print('input image max bigger than 0.95', np.max(input_image))
if np.min(input_image) < 0.05:
print('input image min smaller than 0.05', np.min(input_image))
return input_image
示例8: visual
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def visual(title, X, activation):
'''create a grid of images and save it as a final image
title : grid image name
X : array of images
'''
assert len(X.shape) == 4
X = X.transpose((0, 2, 3, 1))
if activation == 'sigmoid':
X = np.clip((X)*(255.0), 0, 255).astype(np.uint8)
elif activation == 'tanh':
X = np.clip((X+1.0)*(255.0/2.0), 0, 255).astype(np.uint8)
n = np.ceil(np.sqrt(X.shape[0]))
buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8)
for i, img in enumerate(X):
fill_buf(buff, i, img, X.shape[1:3])
cv2.imwrite('%s.jpg' % (title), buff)
示例9: play
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def play(self, a):
assert not self.episode_terminate,\
"Warning, the episode seems to have terminated. " \
"We need to call either game.begin_episode(max_episode_step) to continue a new " \
"episode or game.start() to force restart."
self.episode_step += 1
reward = 0.0
action = self.action_set[a]
for i in range(self.frame_skip):
reward += self.ale.act(action)
self.ale.getScreenGrayscale(self.screen_buffer[i % self.screen_buffer_length, :, :])
self.total_reward += reward
self.episode_reward += reward
ob = self.get_observation()
terminate_flag = self.episode_terminate
self.replay_memory.append(ob, a, numpy.clip(reward, -1, 1), terminate_flag)
return reward, terminate_flag
示例10: spectrogram2wav
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def spectrogram2wav(mag):
'''# Generate wave file from spectrogram'''
# transpose
mag = mag.T
# de-noramlize
mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db
# to amplitude
mag = np.power(10.0, mag * 0.05)
# wav reconstruction
wav = griffin_lim(mag)
# de-preemphasis
wav = signal.lfilter([1], [1, -hp.preemphasis], wav)
# trim
wav, _ = librosa.effects.trim(wav)
return wav.astype(np.float32)
示例11: convert_to_torque
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def convert_to_torque(self, motor_commands, current_motor_angle,
current_motor_velocity):
"""Convert the commands (position control or torque control) to torque.
Args:
motor_commands: The desired motor angle if the motor is in position
control mode. The pwm signal if the motor is in torque control mode.
current_motor_angle: The motor angle at the current time step.
current_motor_velocity: The motor velocity at the current time step.
Returns:
actual_torque: The torque that needs to be applied to the motor.
observed_torque: The torque observed by the sensor.
"""
if self._torque_control_enabled:
pwm = motor_commands
else:
pwm = (-self._kp * (current_motor_angle - motor_commands)
- self._kd * current_motor_velocity)
pwm = np.clip(pwm, -1.0, 1.0)
return self._convert_to_torque_from_pwm(pwm, current_motor_velocity)
示例12: augment_hsv
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
x = (np.random.uniform(-1, 1, 3) * np.array([hgain, sgain, vgain]) + 1).astype(np.float32) # random gains
img_hsv = (cv2.cvtColor(img, cv2.COLOR_BGR2HSV) * x.reshape((1, 1, 3))).clip(None, 255).astype(np.uint8)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
# def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): # original version
# # SV augmentation by 50%
# img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val
#
# S = img_hsv[:, :, 1].astype(np.float32) # saturation
# V = img_hsv[:, :, 2].astype(np.float32) # value
#
# a = random.uniform(-1, 1) * sgain + 1
# b = random.uniform(-1, 1) * vgain + 1
# S *= a
# V *= b
#
# img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255)
# img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255)
# cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
示例13: save_wav
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def save_wav(audio, output_wav_file):
wav.write(output_wav_file, 16000, np.array(np.clip(np.round(audio), -2**15, 2**15-1), dtype=np.int16))
print('output dB', db(audio))
示例14: setup_graph
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def setup_graph(self, input_audio_batch, target_phrase):
batch_size = input_audio_batch.shape[0]
weird = (input_audio_batch.shape[1] - 1) // 320
logits_arg2 = np.tile(weird, batch_size)
dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32)
dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32)
pass_in = np.clip(input_audio_batch, -2**15, 2**15-1)
seq_len = np.tile(weird, batch_size).astype(np.int32)
with tf.variable_scope('', reuse=tf.AUTO_REUSE):
inputs = tf.placeholder(tf.float32, shape=pass_in.shape, name='a')
len_batch = tf.placeholder(tf.float32, name='b')
arg2_logits = tf.placeholder(tf.int32, shape=logits_arg2.shape, name='c')
arg1_dense = tf.placeholder(tf.float32, shape=dense_arg1.shape, name='d')
arg2_dense = tf.placeholder(tf.int32, shape=dense_arg2.shape, name='e')
len_seq = tf.placeholder(tf.int32, shape=seq_len.shape, name='f')
logits = get_logits(inputs, arg2_logits)
target = ctc_label_dense_to_sparse(arg1_dense, arg2_dense, len_batch)
ctcloss = tf.nn.ctc_loss(labels=tf.cast(target, tf.int32), inputs=logits, sequence_length=len_seq)
decoded, _ = tf.nn.ctc_greedy_decoder(logits, arg2_logits, merge_repeated=True)
sess = tf.Session()
saver = tf.train.Saver(tf.global_variables())
saver.restore(sess, "models/session_dump")
func1 = lambda a, b, c, d, e, f: sess.run(ctcloss,
feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
func2 = lambda a, b, c, d, e, f: sess.run([ctcloss, decoded],
feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
return (func1, func2)
示例15: getctcloss
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import clip [as 别名]
def getctcloss(self, input_audio_batch, target_phrase, decode=False):
batch_size = input_audio_batch.shape[0]
weird = (input_audio_batch.shape[1] - 1) // 320
logits_arg2 = np.tile(weird, batch_size)
dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32)
dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32)
pass_in = np.clip(input_audio_batch, -2**15, 2**15-1)
seq_len = np.tile(weird, batch_size).astype(np.int32)
if decode:
return self.funcs[1](pass_in, batch_size, logits_arg2, dense_arg1, dense_arg2, seq_len)
else:
return self.funcs[0](pass_in, batch_size, logits_arg2, dense_arg1, dense_arg2, seq_len)