当前位置: 首页>>代码示例>>Python>>正文


Python numpy.bool方法代码示例

本文整理汇总了Python中numpy.bool方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.bool方法的具体用法?Python numpy.bool怎么用?Python numpy.bool使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.bool方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fetch

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def fetch(clobber=False):
    """
    Downloads the 3D dust map of Leike & Ensslin (2019).

    Args:
        clobber (Optional[bool]): If ``True``, any existing file will be
            overwritten, even if it appears to match. If ``False`` (the
            default), ``fetch()`` will attempt to determine if the dataset
            already exists. This determination is not 100\% robust against data
            corruption.
    """
    dest_dir = fname_pattern = os.path.join(data_dir(), 'leike_ensslin_2019')
    fname = os.path.join(dest_dir, 'simple_cube.h5')
    
    # Check if the FITS table already exists
    md5sum = 'f54e01c253453117e3770575bed35078'

    if (not clobber) and fetch_utils.check_md5sum(fname, md5sum):
        print('File appears to exist already. Call `fetch(clobber=True)` '
              'to force overwriting of existing file.')
        return

    # Download from the server
    url = 'https://zenodo.org/record/2577337/files/simple_cube.h5?download=1'
    fetch_utils.download_and_verify(url, md5sum, fname) 
开发者ID:gregreen,项目名称:dustmaps,代码行数:27,代码来源:leike_ensslin_2019.py

示例2: dataframe_select

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def dataframe_select(df, *cols, **filters):
    '''
    dataframe_select(df, k1=v1, k2=v2...) yields df after selecting all the columns in which the
      given keys (k1, k2, etc.) have been selected such that the associated columns in the dataframe
      contain only the rows whose cells match the given values.
    dataframe_select(df, col1, col2...) selects the given columns.
    dataframe_select(df, col1, col2..., k1=v1, k2=v2...) selects both.
    
    If a value is a tuple/list of 2 elements, then it is considered a range where cells must fall
    between the values. If value is a tuple/list of more than 2 elements or is a set of any length
    then it is a list of values, any one of which can match the cell.
    '''
    ii = np.ones(len(df), dtype='bool')
    for (k,v) in six.iteritems(filters):
        vals = df[k].values
        if   pimms.is_set(v):                    jj = np.isin(vals, list(v))
        elif pimms.is_vector(v) and len(v) == 2: jj = (v[0] <= vals) & (vals < v[1])
        elif pimms.is_vector(v):                 jj = np.isin(vals, list(v))
        else:                                    jj = (vals == v)
        ii = np.logical_and(ii, jj)
    if len(ii) != np.sum(ii): df = df.loc[ii]
    if len(cols) > 0: df = df[list(cols)]
    return df 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:25,代码来源:core.py

示例3: testDecodeObjectIsCrowd

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def testDecodeObjectIsCrowd(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_is_crowd = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/is_crowd': self._Int64Feature(object_is_crowd),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_is_crowd].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_is_crowd],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_is_crowd]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:24,代码来源:tf_example_decoder_test.py

示例4: testDecodeObjectDifficult

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def testDecodeObjectDifficult(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_difficult = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/difficult': self._Int64Feature(object_difficult),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_difficult].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_difficult],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_difficult]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:24,代码来源:tf_example_decoder_test.py

示例5: store_effect

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def store_effect(self, idx, action, reward, done):
        """Store effects of action taken after obeserving frame stored
        at index idx. The reason `store_frame` and `store_effect` is broken
        up into two functions is so that once can call `encode_recent_observation`
        in between.

        Paramters
        ---------
        idx: int
            Index in buffer of recently observed frame (returned by `store_frame`).
        action: int
            Action that was performed upon observing this frame.
        reward: float
            Reward that was received when the actions was performed.
        done: bool
            True if episode was finished after performing that action.
        """
        self.action[idx] = action
        self.reward[idx] = reward
        self.done[idx]   = done 
开发者ID:xuwd11,项目名称:cs294-112_hws,代码行数:22,代码来源:dqn_utils.py

示例6: test_linear_sum_assignment_input_validation

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def test_linear_sum_assignment_input_validation():
    assert_raises(ValueError, linear_sum_assignment, [1, 2, 3])

    C = [[1, 2, 3], [4, 5, 6]]
    assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.asarray(C)))
    # assert_array_equal(linear_sum_assignment(C),
    #                    linear_sum_assignment(matrix(C)))

    I = np.identity(3)
    assert_array_equal(linear_sum_assignment(I.astype(np.bool)), linear_sum_assignment(I))
    assert_raises(ValueError, linear_sum_assignment, I.astype(str))

    I[0][0] = np.nan
    assert_raises(ValueError, linear_sum_assignment, I)

    I = np.identity(3)
    I[1][1] = np.inf
    assert_raises(ValueError, linear_sum_assignment, I) 
开发者ID:MolSSI,项目名称:QCElemental,代码行数:20,代码来源:test_scipy_hungarian.py

示例7: put

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def put(self, enc_obs, actions, rewards, mus, dones, masks):
        # enc_obs [nenv, (nsteps + nstack), nh, nw, nc]
        # actions, rewards, dones [nenv, nsteps]
        # mus [nenv, nsteps, nact]

        if self.enc_obs is None:
            self.enc_obs = np.empty([self.size] + list(enc_obs.shape), dtype=np.uint8)
            self.actions = np.empty([self.size] + list(actions.shape), dtype=np.int32)
            self.rewards = np.empty([self.size] + list(rewards.shape), dtype=np.float32)
            self.mus = np.empty([self.size] + list(mus.shape), dtype=np.float32)
            self.dones = np.empty([self.size] + list(dones.shape), dtype=np.bool)
            self.masks = np.empty([self.size] + list(masks.shape), dtype=np.bool)

        self.enc_obs[self.next_idx] = enc_obs
        self.actions[self.next_idx] = actions
        self.rewards[self.next_idx] = rewards
        self.mus[self.next_idx] = mus
        self.dones[self.next_idx] = dones
        self.masks[self.next_idx] = masks

        self.next_idx = (self.next_idx + 1) % self.size
        self.num_in_buffer = min(self.size, self.num_in_buffer + 1) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:24,代码来源:buffer.py

示例8: equirect_facetype

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def equirect_facetype(h, w):
    '''
    0F 1R 2B 3L 4U 5D
    '''
    tp = np.roll(np.arange(4).repeat(w // 4)[None, :].repeat(h, 0), 3 * w // 8, 1)

    # Prepare ceil mask
    mask = np.zeros((h, w // 4), np.bool)
    idx = np.linspace(-np.pi, np.pi, w // 4) / 4
    idx = h // 2 - np.round(np.arctan(np.cos(idx)) * h / np.pi).astype(int)
    for i, j in enumerate(idx):
        mask[:j, i] = 1
    mask = np.roll(np.concatenate([mask] * 4, 1), 3 * w // 8, 1)

    tp[mask] = 4
    tp[np.flip(mask, 0)] = 5

    return tp.astype(np.int32) 
开发者ID:sunset1995,项目名称:py360convert,代码行数:20,代码来源:utils.py

示例9: get_poly_centers

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def get_poly_centers(ob, type=np.float32, mesh=None):
    mod = False
    m_count = len(ob.modifiers)
    if m_count > 0:
        show = np.zeros(m_count, dtype=np.bool)
        ren_set = np.copy(show)
        ob.modifiers.foreach_get('show_render', show)
        ob.modifiers.foreach_set('show_render', ren_set)
        mod = True
    p_count = len(mesh.polygons)
    center = np.zeros(p_count * 3, dtype=type)
    mesh.polygons.foreach_get('center', center)
    center.shape = (p_count, 3)
    if mod:
        ob.modifiers.foreach_set('show_render', show)

    return center 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:19,代码来源:ModelingCloth.py

示例10: get_poly_normals

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def get_poly_normals(ob, type=np.float32, mesh=None):
    mod = False
    m_count = len(ob.modifiers)
    if m_count > 0:
        show = np.zeros(m_count, dtype=np.bool)
        ren_set = np.copy(show)
        ob.modifiers.foreach_get('show_render', show)
        ob.modifiers.foreach_set('show_render', ren_set)
        mod = True
    p_count = len(mesh.polygons)
    normal = np.zeros(p_count * 3, dtype=type)
    mesh.polygons.foreach_get('normal', normal)
    normal.shape = (p_count, 3)
    if mod:
        ob.modifiers.foreach_set('show_render', show)

    return normal 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:19,代码来源:ModelingCloth.py

示例11: get_v_normals

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def get_v_normals(ob, arr, mesh):
    """Since we're reading from a shape key we have to use
    a proxy mesh."""
    mod = False
    m_count = len(ob.modifiers)
    if m_count > 0:
        show = np.zeros(m_count, dtype=np.bool)
        ren_set = np.copy(show)
        ob.modifiers.foreach_get('show_render', show)
        ob.modifiers.foreach_set('show_render', ren_set)
        mod = True
    #v_count = len(mesh.vertices)
    #normal = np.zeros(v_count * 3)#, dtype=type)
    mesh.vertices.foreach_get('normal', arr.ravel())
    #normal.shape = (v_count, 3)
    if mod:
        ob.modifiers.foreach_set('show_render', show) 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:19,代码来源:ModelingCloth.py

示例12: triangle_bounds_check

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def triangle_bounds_check(tri_co, co_min, co_max, idxer, fudge):
    """Returns a bool aray indexing the triangles that
    intersect the bounds of the object"""

    # min check cull step 1
    tri_min = np.min(tri_co, axis=1) - fudge
    check_min = co_max > tri_min
    in_min = np.all(check_min, axis=1)
    
    # max check cull step 2
    idx = idxer[in_min]
    tri_max = np.max(tri_co[in_min], axis=1) + fudge
    check_max = tri_max > co_min
    in_max = np.all(check_max, axis=1)
    in_min[idx[~in_max]] = False
    
    return in_min, tri_min[in_min], tri_max[in_max] # can reuse the min and max 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:19,代码来源:ModelingCloth.py

示例13: tri_back_check

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def tri_back_check(co, tri_min, tri_max, idxer, fudge):
    """Returns a bool aray indexing the vertices that
    intersect the bounds of the culled triangles"""

    # min check cull step 1
    tb_min = np.min(tri_min, axis=0) - fudge
    check_min = co > tb_min
    in_min = np.all(check_min, axis=1)
    idx = idxer[in_min]
    
    # max check cull step 2
    tb_max = np.max(tri_max, axis=0) + fudge
    check_max = co[in_min] < tb_max
    in_max = np.all(check_max, axis=1)        
    in_min[idx[~in_max]] = False    
    
    return in_min 


# -------------------------------------------------------
# ------------------------------------------------------- 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:23,代码来源:ModelingCloth.py

示例14: basic_unwrap

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def basic_unwrap():
    ob = bpy.context.object
    mode = ob.mode
    data = ob.data
    key = ob.active_shape_key_index
    bpy.ops.object.mode_set(mode='OBJECT')        
    layers = [i.name for i in ob.data.uv_layers]
    if "UV_Shape_key" not in layers:
        bpy.ops.mesh.uv_texture_add()
        ob.data.uv_layers[len(ob.data.uv_layers) - 1].name = 'UV_Shape_key'
    
    ob.data.uv_layers.active_index = len(ob.data.uv_layers) - 1
    ob.active_shape_key_index = 0
    data.vertices.foreach_set('select', np.ones(len(data.vertices), dtype=np.bool))

    bpy.ops.object.mode_set(mode='EDIT')
    bpy.ops.uv.unwrap(method='ANGLE_BASED', margin=0.0635838)
    bpy.ops.object.mode_set(mode=mode)
    ob.active_shape_key_index = key 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:21,代码来源:UVShape.py

示例15: testDecodeObjectIsCrowd

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import bool [as 别名]
def testDecodeObjectIsCrowd(self):
    image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    encoded_jpeg = self._EncodeImage(image_tensor)
    object_is_crowd = [0, 1]
    example = tf.train.Example(features=tf.train.Features(feature={
        'image/encoded': self._BytesFeature(encoded_jpeg),
        'image/format': self._BytesFeature('jpeg'),
        'image/object/is_crowd': self._Int64Feature(object_is_crowd),
    })).SerializeToString()

    example_decoder = tf_example_decoder.TfExampleDecoder()
    tensor_dict = example_decoder.Decode(tf.convert_to_tensor(example))

    self.assertAllEqual((tensor_dict[
        fields.InputDataFields.groundtruth_is_crowd].get_shape().as_list()),
                        [None])
    with self.test_session() as sess:
      tensor_dict = sess.run(tensor_dict)

    self.assertAllEqual([bool(item) for item in object_is_crowd],
                        tensor_dict[
                            fields.InputDataFields.groundtruth_is_crowd]) 
开发者ID:datitran,项目名称:object_detector_app,代码行数:24,代码来源:tf_example_decoder_test.py


注:本文中的numpy.bool方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。