本文整理汇总了Python中numpy.asfortranarray方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.asfortranarray方法的具体用法?Python numpy.asfortranarray怎么用?Python numpy.asfortranarray使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.asfortranarray方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __get_annotation__
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def __get_annotation__(self, mask, image=None):
_, contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
segmentation = []
for contour in contours:
# Valid polygons have >= 6 coordinates (3 points)
if contour.size >= 6:
segmentation.append(contour.flatten().tolist())
RLEs = cocomask.frPyObjects(segmentation, mask.shape[0], mask.shape[1])
RLE = cocomask.merge(RLEs)
# RLE = cocomask.encode(np.asfortranarray(mask))
area = cocomask.area(RLE)
[x, y, w, h] = cv2.boundingRect(mask)
if image is not None:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.drawContours(image, contours, -1, (0,255,0), 1)
cv2.rectangle(image,(x,y),(x+w,y+h), (255,0,0), 2)
cv2.imshow("", image)
cv2.waitKey(1)
return segmentation, [x, y, w, h], area
示例2: build_coco_results
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks):
"""Arrange resutls to match COCO specs in http://cocodataset.org/#format
"""
# If no results, return an empty list
if rois is None:
return []
results = []
for image_id in image_ids:
# Loop through detections
for i in range(rois.shape[0]):
class_id = class_ids[i]
score = scores[i]
bbox = np.around(rois[i], 1)
mask = masks[:, :, i]
result = {
"image_id": image_id,
"category_id": dataset.get_source_class_id(class_id, "coco"),
"bbox": [bbox[1], bbox[0], bbox[3] - bbox[1], bbox[2] - bbox[0]],
"score": score,
"segmentation": maskUtils.encode(np.asfortranarray(mask))
}
results.append(result)
return results
示例3: build_dataset
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def build_dataset(n_samples=50, n_features=200, n_targets=1, sparse_X=False):
"""Build samples and observation for linear regression problem."""
random_state = np.random.RandomState(0)
if n_targets > 1:
w = random_state.randn(n_features, n_targets)
else:
w = random_state.randn(n_features)
if sparse_X:
X = sparse.random(n_samples, n_features, density=0.5, format='csc',
random_state=random_state)
else:
X = np.asfortranarray(random_state.randn(n_samples, n_features))
y = X.dot(w)
return X, y
示例4: concat_data_arrays
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def concat_data_arrays(data_dict: Dict[str, List[ndarray]]) -> Dict[str, ndarray]:
new_data: Dict[str, ndarray] = {}
empty_arrs = create_empty_arrs(data_dict)
for kind, arrs in data_dict.items():
if len(arrs) == 1:
arr = arrs[0]
if arr.ndim == 1:
arr = arr.reshape(-1, 1)
new_data[kind] = np.asfortranarray(arr)
else:
data = empty_arrs[kind]
i = 0
for arr in arrs:
if arr.ndim == 1:
data[:, i] = arr
i += 1
else:
for j in range(arr.shape[1]):
data[:, i] = arr[:, j]
i += 1
new_data[kind] = data
return new_data
示例5: testCopytoExecution
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def testCopytoExecution(self):
a = ones((2, 3), chunk_size=1)
b = tensor([3, -1, 3], chunk_size=2)
copyto(a, b, where=b > 1)
res = self.executor.execute_tensor(a, concat=True)[0]
expected = np.array([[3, 1, 3], [3, 1, 3]])
np.testing.assert_equal(res, expected)
a = ones((2, 3), chunk_size=1)
b = tensor(np.asfortranarray(np.random.rand(2, 3)), chunk_size=2)
copyto(b, a)
res = self.executor.execute_tensor(b, concat=True)[0]
expected = np.asfortranarray(np.ones((2, 3)))
np.testing.assert_array_equal(res, expected)
self.assertTrue(res.flags['F_CONTIGUOUS'])
self.assertFalse(res.flags['C_CONTIGUOUS'])
示例6: testAstypeExecution
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def testAstypeExecution(self):
raw = np.random.random((10, 5))
arr = tensor(raw, chunk_size=3)
arr2 = arr.astype('i8')
res = self.executor.execute_tensor(arr2, concat=True)
np.testing.assert_array_equal(res[0], raw.astype('i8'))
raw = sps.random(10, 5, density=.2)
arr = tensor(raw, chunk_size=3)
arr2 = arr.astype('i8')
res = self.executor.execute_tensor(arr2, concat=True)
self.assertTrue(np.array_equal(res[0].toarray(), raw.astype('i8').toarray()))
raw = np.asfortranarray(np.random.random((10, 5)))
arr = tensor(raw, chunk_size=3)
arr2 = arr.astype('i8', order='C')
res = self.executor.execute_tensor(arr2, concat=True)[0]
np.testing.assert_array_equal(res, raw.astype('i8'))
self.assertTrue(res.flags['C_CONTIGUOUS'])
self.assertFalse(res.flags['F_CONTIGUOUS'])
示例7: testArgwhereExecution
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def testArgwhereExecution(self):
x = arange(6, chunk_size=2).reshape(2, 3)
t = argwhere(x > 1)
res = self.executor.execute_tensor(t, concat=True)[0]
expected = np.argwhere(np.arange(6).reshape(2, 3) > 1)
np.testing.assert_array_equal(res, expected)
data = np.asfortranarray(np.random.rand(10, 20))
x = tensor(data, chunk_size=10)
t = argwhere(x > 0.5)
res = self.executor.execute_tensor(t, concat=True)[0]
expected = np.argwhere(data > 0.5)
np.testing.assert_array_equal(res, expected)
self.assertTrue(res.flags['F_CONTIGUOUS'])
self.assertFalse(res.flags['C_CONTIGUOUS'])
示例8: testCosOrderExecution
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def testCosOrderExecution(self):
data = np.asfortranarray(np.random.rand(3, 5))
x = tensor(data, chunk_size=2)
t = cos(x)
res = self.executor.execute_tensor(t, concat=True)[0]
np.testing.assert_allclose(res, np.cos(data))
self.assertFalse(res.flags['C_CONTIGUOUS'])
self.assertTrue(res.flags['F_CONTIGUOUS'])
t2 = cos(x, order='C')
res2 = self.executor.execute_tensor(t2, concat=True)[0]
np.testing.assert_allclose(res2, np.cos(data, order='C'))
self.assertTrue(res2.flags['C_CONTIGUOUS'])
self.assertFalse(res2.flags['F_CONTIGUOUS'])
示例9: iddr_id
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def iddr_id(A, k):
"""
Compute ID of a real matrix to a specified rank.
:param A:
Matrix.
:type A: :class:`numpy.ndarray`
:param k:
Rank of ID.
:type k: int
:return:
Column index array.
:rtype: :class:`numpy.ndarray`
:return:
Interpolation coefficients.
:rtype: :class:`numpy.ndarray`
"""
A = np.asfortranarray(A)
idx, rnorms = _id.iddr_id(A, k)
n = A.shape[1]
proj = A.T.ravel()[:k*(n-k)].reshape((k, n-k), order='F')
return idx, proj
示例10: idd_reconid
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def idd_reconid(B, idx, proj):
"""
Reconstruct matrix from real ID.
:param B:
Skeleton matrix.
:type B: :class:`numpy.ndarray`
:param idx:
Column index array.
:type idx: :class:`numpy.ndarray`
:param proj:
Interpolation coefficients.
:type proj: :class:`numpy.ndarray`
:return:
Reconstructed matrix.
:rtype: :class:`numpy.ndarray`
"""
B = np.asfortranarray(B)
if proj.size > 0:
return _id.idd_reconid(B, idx, proj)
else:
return B[:, np.argsort(idx)]
示例11: idd_copycols
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def idd_copycols(A, k, idx):
"""
Reconstruct skeleton matrix from real ID.
:param A:
Original matrix.
:type A: :class:`numpy.ndarray`
:param k:
Rank of ID.
:type k: int
:param idx:
Column index array.
:type idx: :class:`numpy.ndarray`
:return:
Skeleton matrix.
:rtype: :class:`numpy.ndarray`
"""
A = np.asfortranarray(A)
return _id.idd_copycols(A, k, idx)
#------------------------------------------------------------------------------
# idd_id2svd.f
#------------------------------------------------------------------------------
示例12: idzr_id
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def idzr_id(A, k):
"""
Compute ID of a complex matrix to a specified rank.
:param A:
Matrix.
:type A: :class:`numpy.ndarray`
:param k:
Rank of ID.
:type k: int
:return:
Column index array.
:rtype: :class:`numpy.ndarray`
:return:
Interpolation coefficients.
:rtype: :class:`numpy.ndarray`
"""
A = np.asfortranarray(A)
idx, rnorms = _id.idzr_id(A, k)
n = A.shape[1]
proj = A.T.ravel()[:k*(n-k)].reshape((k, n-k), order='F')
return idx, proj
示例13: idz_reconid
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def idz_reconid(B, idx, proj):
"""
Reconstruct matrix from complex ID.
:param B:
Skeleton matrix.
:type B: :class:`numpy.ndarray`
:param idx:
Column index array.
:type idx: :class:`numpy.ndarray`
:param proj:
Interpolation coefficients.
:type proj: :class:`numpy.ndarray`
:return:
Reconstructed matrix.
:rtype: :class:`numpy.ndarray`
"""
B = np.asfortranarray(B)
if proj.size > 0:
return _id.idz_reconid(B, idx, proj)
else:
return B[:, np.argsort(idx)]
示例14: idz_copycols
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def idz_copycols(A, k, idx):
"""
Reconstruct skeleton matrix from complex ID.
:param A:
Original matrix.
:type A: :class:`numpy.ndarray`
:param k:
Rank of ID.
:type k: int
:param idx:
Column index array.
:type idx: :class:`numpy.ndarray`
:return:
Skeleton matrix.
:rtype: :class:`numpy.ndarray`
"""
A = np.asfortranarray(A)
return _id.idz_copycols(A, k, idx)
#------------------------------------------------------------------------------
# idz_id2svd.f
#------------------------------------------------------------------------------
示例15: _stft
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import asfortranarray [as 别名]
def _stft(self, data, inverse=False, length=None):
"""
Single entrypoint for both stft and istft. This computes stft and istft with librosa on stereo data. The two
channels are processed separately and are concatenated together in the result. The expected input formats are:
(n_samples, 2) for stft and (T, F, 2) for istft.
:param data: np.array with either the waveform or the complex spectrogram depending on the parameter inverse
:param inverse: should a stft or an istft be computed.
:return: Stereo data as numpy array for the transform. The channels are stored in the last dimension
"""
assert not (inverse and length is None)
data = np.asfortranarray(data)
N = self._params["frame_length"]
H = self._params["frame_step"]
win = hann(N, sym=False)
fstft = istft if inverse else stft
win_len_arg = {"win_length": None, "length": length} if inverse else {"n_fft": N}
n_channels = data.shape[-1]
out = []
for c in range(n_channels):
d = data[:, :, c].T if inverse else data[:, c]
s = fstft(d, hop_length=H, window=win, center=False, **win_len_arg)
s = np.expand_dims(s.T, 2-inverse)
out.append(s)
if len(out) == 1:
return out[0]
return np.concatenate(out, axis=2-inverse)