本文整理汇总了Python中numpy.array_equal方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.array_equal方法的具体用法?Python numpy.array_equal怎么用?Python numpy.array_equal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.array_equal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_train
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_train(self):
model = SimpleModel().train()
train_config = TrainConfig(model, [], torch.nn.Module(), torch.optim.SGD(model.parameters(), lr=0.1))
dp = TrainDataProcessor(train_config=train_config)
self.assertFalse(model.fc.weight.is_cuda)
self.assertTrue(model.training)
res = dp.predict({'data': torch.rand(1, 3)}, is_train=True)
self.assertTrue(model.training)
self.assertTrue(res.requires_grad)
self.assertIsNone(res.grad)
with self.assertRaises(NotImplementedError):
dp.process_batch({'data': torch.rand(1, 3), 'target': torch.rand(1)}, is_train=True)
loss = SimpleLoss()
train_config = TrainConfig(model, [], loss, torch.optim.SGD(model.parameters(), lr=0.1))
dp = TrainDataProcessor(train_config=train_config)
res = dp.process_batch({'data': torch.rand(1, 3), 'target': torch.rand(1)}, is_train=True)
self.assertTrue(model.training)
self.assertTrue(loss.module.requires_grad)
self.assertIsNotNone(loss.module.grad)
self.assertTrue(np.array_equal(res, loss.res.data.numpy()))
示例2: test_residual
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_residual():
cell = gluon.rnn.ResidualCell(gluon.rnn.GRUCell(50, prefix='rnn_'))
inputs = [mx.sym.Variable('rnn_t%d_data'%i) for i in range(2)]
outputs, _ = cell.unroll(2, inputs)
outputs = mx.sym.Group(outputs)
assert sorted(cell.collect_params().keys()) == \
['rnn_h2h_bias', 'rnn_h2h_weight', 'rnn_i2h_bias', 'rnn_i2h_weight']
# assert outputs.list_outputs() == \
# ['rnn_t0_out_plus_residual_output', 'rnn_t1_out_plus_residual_output']
args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50))
assert outs == [(10, 50), (10, 50)]
outputs = outputs.eval(rnn_t0_data=mx.nd.ones((10, 50)),
rnn_t1_data=mx.nd.ones((10, 50)),
rnn_i2h_weight=mx.nd.zeros((150, 50)),
rnn_i2h_bias=mx.nd.zeros((150,)),
rnn_h2h_weight=mx.nd.zeros((150, 50)),
rnn_h2h_bias=mx.nd.zeros((150,)))
expected_outputs = np.ones((10, 50))
assert np.array_equal(outputs[0].asnumpy(), expected_outputs)
assert np.array_equal(outputs[1].asnumpy(), expected_outputs)
示例3: test_residual_fused
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_residual_fused():
cell = mx.rnn.ResidualCell(
mx.rnn.FusedRNNCell(50, num_layers=3, mode='lstm',
prefix='rnn_', dropout=0.5))
inputs = [mx.sym.Variable('rnn_t%d_data'%i) for i in range(2)]
outputs, _ = cell.unroll(2, inputs, merge_outputs=None)
assert sorted(cell.params._params.keys()) == \
['rnn_parameters']
args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50))
assert outs == [(10, 2, 50)]
outputs = outputs.eval(ctx=mx.gpu(0),
rnn_t0_data=mx.nd.ones((10, 50), ctx=mx.gpu(0))+5,
rnn_t1_data=mx.nd.ones((10, 50), ctx=mx.gpu(0))+5,
rnn_parameters=mx.nd.zeros((61200,), ctx=mx.gpu(0)))
expected_outputs = np.ones((10, 2, 50))+5
assert np.array_equal(outputs[0].asnumpy(), expected_outputs)
示例4: test_compute_corloc_with_normal_iou_threshold
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_compute_corloc_with_normal_iou_threshold(self):
num_groundtruth_classes = 3
matching_iou_threshold = 0.5
nms_iou_threshold = 1.0
nms_max_output_boxes = 10000
eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
matching_iou_threshold,
nms_iou_threshold,
nms_max_output_boxes)
detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3],
[0, 0, 5, 5]], dtype=float)
detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float)
detected_class_labels = np.array([0, 1, 0, 2], dtype=int)
groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]],
dtype=float)
groundtruth_class_labels = np.array([0, 0, 2], dtype=int)
is_class_correctly_detected_in_image = eval1._compute_cor_loc(
detected_boxes, detected_scores, detected_class_labels,
groundtruth_boxes, groundtruth_class_labels)
expected_result = np.array([1, 0, 1], dtype=int)
self.assertTrue(np.array_equal(expected_result,
is_class_correctly_detected_in_image))
示例5: test_compute_corloc_with_very_large_iou_threshold
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_compute_corloc_with_very_large_iou_threshold(self):
num_groundtruth_classes = 3
matching_iou_threshold = 0.9
nms_iou_threshold = 1.0
nms_max_output_boxes = 10000
eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
matching_iou_threshold,
nms_iou_threshold,
nms_max_output_boxes)
detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3],
[0, 0, 5, 5]], dtype=float)
detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float)
detected_class_labels = np.array([0, 1, 0, 2], dtype=int)
groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]],
dtype=float)
groundtruth_class_labels = np.array([0, 0, 2], dtype=int)
is_class_correctly_detected_in_image = eval1._compute_cor_loc(
detected_boxes, detected_scores, detected_class_labels,
groundtruth_boxes, groundtruth_class_labels)
expected_result = np.array([1, 0, 0], dtype=int)
self.assertTrue(np.array_equal(expected_result,
is_class_correctly_detected_in_image))
示例6: test_add_single_ground_truth_image_info
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_add_single_ground_truth_image_info(self):
expected_num_gt_instances_per_class = np.array([3, 1, 2], dtype=int)
expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int)
self.assertTrue(np.array_equal(expected_num_gt_instances_per_class,
self.od_eval.num_gt_instances_per_class))
self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class,
self.od_eval.num_gt_imgs_per_class))
groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
[10, 10, 12, 12]], dtype=float)
self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes["img2"],
groundtruth_boxes2))
groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
self.assertTrue(np.allclose(
self.od_eval.groundtruth_is_difficult_list["img2"],
groundtruth_is_difficult_list2))
groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int)
self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[
"img1"], groundtruth_class_labels1))
示例7: test_add_single_detected_image_info
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_add_single_detected_image_info(self):
expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [],
[np.array([0.9], dtype=float)]]
expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [],
[np.array([0], dtype=bool)]]
expected_num_images_correctly_detected_per_class = np.array([0, 0, 0],
dtype=int)
for i in range(self.od_eval.num_class):
for j in range(len(expected_scores_per_class[i])):
self.assertTrue(np.allclose(expected_scores_per_class[i][j],
self.od_eval.scores_per_class[i][j]))
self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][
j], self.od_eval.tp_fp_labels_per_class[i][j]))
self.assertTrue(np.array_equal(
expected_num_images_correctly_detected_per_class,
self.od_eval.num_images_correctly_detected_per_class))
示例8: test_water_minima_fragment
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_water_minima_fragment():
mol = water_dimer_minima.copy()
frag_0 = mol.get_fragment(0, orient=True)
frag_1 = mol.get_fragment(1, orient=True)
assert frag_0.get_hash() == "5f31757232a9a594c46073082534ca8a6806d367"
assert frag_1.get_hash() == "bdc1f75bd1b7b999ff24783d7c1673452b91beb9"
frag_0_1 = mol.get_fragment(0, 1)
frag_1_0 = mol.get_fragment(1, 0)
assert np.array_equal(mol.symbols[:3], frag_0.symbols)
assert np.allclose(mol.masses[:3], frag_0.masses)
assert np.array_equal(mol.symbols, frag_0_1.symbols)
assert np.allclose(mol.geometry, frag_0_1.geometry)
assert np.array_equal(np.hstack((mol.symbols[3:], mol.symbols[:3])), frag_1_0.symbols)
assert np.allclose(np.hstack((mol.masses[3:], mol.masses[:3])), frag_1_0.masses)
示例9: test_pruneFeatureMap_ShouldPruneRightParams
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_pruneFeatureMap_ShouldPruneRightParams(self):
dropped_index = 0
output = self.module(self.input)
torch.autograd.backward(output, self.upstream_gradient)
old_weight_size = self.module.weight.size()
old_bias_size = self.module.bias.size()
old_out_channels = self.module.out_channels
old_weight_values = self.module.weight.data.cpu().numpy()
# ensure that the chosen index is dropped
self.module.prune_feature_map(dropped_index)
# check bias size
self.assertEqual(self.module.bias.size()[0], (old_bias_size[0]-1))
# check output channels
self.assertEqual(self.module.out_channels, old_out_channels-1)
_, *other_old_weight_sizes = old_weight_size
# check weight size
self.assertEqual(self.module.weight.size(), (old_weight_size[0]-1, *other_old_weight_sizes))
# check weight value
expected = np.delete(old_weight_values, dropped_index , 0)
self.assertTrue(np.array_equal(self.module.weight.data.cpu().numpy(), expected))
示例10: test_PLinearDropInputs_ShouldDropRightParams
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_PLinearDropInputs_ShouldDropRightParams(self):
dropped_index = 0
# assume input is 2x2x2, 2 layers of 2x2
input_shape = (2, 2, 2)
module = pnn.PLinear(8, 10)
old_num_features = module.in_features
old_weight = module.weight.data.cpu().numpy()
resized_old_weight = np.resize(old_weight, (module.out_features, *input_shape))
module.drop_inputs(input_shape, dropped_index)
new_shape = module.weight.size()
# ensure that the chosen index is dropped
expected_weight = np.resize(np.delete(resized_old_weight, dropped_index, 1), new_shape)
output = module.weight.data.cpu().numpy()
self.assertTrue(np.array_equal(output, expected_weight))
# ensure num features is reduced
self.assertTrue(module.in_features, old_num_features-1)
示例11: test_PBatchNorm2dDropInputChannel_ShouldDropRightParams
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_PBatchNorm2dDropInputChannel_ShouldDropRightParams(self):
dropped_index = 0
module = pnn.PBatchNorm2d(2)
old_num_features = module.num_features
old_bias = module.bias.data.cpu().numpy()
old_weight = module.weight.data.cpu().numpy()
module.drop_input_channel(dropped_index)
# ensure that the chosen index is dropped
expected_weight = np.delete(old_weight, dropped_index, 0)
self.assertTrue(np.array_equal(module.weight.data.cpu().numpy(), expected_weight))
expected_bias = np.delete(old_bias, dropped_index, 0)
self.assertTrue(np.array_equal(module.bias.data.cpu().numpy(), expected_bias))
# ensure num features is reduced
self.assertTrue(module.num_features, old_num_features-1)
示例12: _ewald_exxdiv_for_G0
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def _ewald_exxdiv_for_G0(cell, kpts, dms, vk, kpts_band=None):
s = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=kpts)
madelung = tools.pbc.madelung(cell, kpts)
if kpts is None:
for i,dm in enumerate(dms):
vk[i] += madelung * reduce(numpy.dot, (s, dm, s))
elif numpy.shape(kpts) == (3,):
if kpts_band is None or is_zero(kpts_band-kpts):
for i,dm in enumerate(dms):
vk[i] += madelung * reduce(numpy.dot, (s, dm, s))
elif kpts_band is None or numpy.array_equal(kpts, kpts_band):
for k in range(len(kpts)):
for i,dm in enumerate(dms):
vk[i,k] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k]))
else:
for k, kpt in enumerate(kpts):
for kp in member(kpt, kpts_band.reshape(-1,3)):
for i,dm in enumerate(dms):
vk[i,kp] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k]))
示例13: test_D2htoDinfh
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_D2htoDinfh(self):
SHCI = lambda: None
SHCI.groupname = 'Dooh'
#SHCI.orbsym = numpy.array([15,14,0,6,7,2,3,10,11,15,14,17,16,5,13,12,16,17,12,13])
SHCI.orbsym = numpy.array([
15, 14, 0, 7, 6, 2, 3, 10, 11, 15, 14, 17, 16, 5, 12, 13, 17, 16,
12, 13
])
coeffs, nRows, rowIndex, rowCoeffs, orbsym = D2htoDinfh(SHCI, 20, 20)
coeffs1, nRows1, rowIndex1, rowCoeffs1, orbsym1 = shci.D2htoDinfh(
SHCI, 20, 20)
self.assertTrue(numpy.array_equal(coeffs1, coeffs))
self.assertTrue(numpy.array_equal(nRows1, nRows))
self.assertTrue(numpy.array_equal(rowIndex1, rowIndex))
self.assertTrue(numpy.array_equal(rowCoeffs1, rowCoeffs))
self.assertTrue(numpy.array_equal(orbsym1, orbsym))
示例14: test_takebak_2d
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def test_takebak_2d(self):
b = numpy.arange(9.).reshape((3,3))
a = numpy.arange(49.).reshape(7,7)
idx = numpy.array([3,0,5])
idy = numpy.array([5,4,1])
ref = a.copy()
ref[idx[:,None],idy] += b
lib.takebak_2d(a, b, idx, idy)
self.assertTrue(numpy.array_equal(ref, a))
b = numpy.arange(9, dtype=numpy.int32).reshape((3,3))
a = numpy.arange(49, dtype=numpy.int32).reshape(7,7)
ref = a.copy()
ref[idx[:,None],idy] += b
lib.takebak_2d(a, b, idx, idy)
self.assertTrue(numpy.array_equal(ref, a))
示例15: chunkWriteSelection
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import array_equal [as 别名]
def chunkWriteSelection(chunk_arr=None, slices=None, data=None):
log.info("chunkWriteSelection")
dims = chunk_arr.shape
rank = len(dims)
if rank == 0:
msg = "No dimension passed to chunkReadSelection"
raise ValueError(msg)
if len(slices) != rank:
msg = "Selection rank does not match dataset rank"
raise ValueError(msg)
if len(data.shape) != rank:
msg = "Input arr does not match dataset rank"
raise ValueError(msg)
updated = False
# check if the new data modifies the array or not
if not np.array_equal(chunk_arr[slices], data):
# update chunk array
chunk_arr[slices] = data
updated = True
return updated