当前位置: 首页>>代码示例>>Python>>正文


Python numpy.arange方法代码示例

本文整理汇总了Python中numpy.arange方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.arange方法的具体用法?Python numpy.arange怎么用?Python numpy.arange使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.arange方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: add_intercept

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def add_intercept(self, X):
        """Add 1's to data as last features."""
        # Data shape
        N, D = X.shape

        # Check if there's not already an intercept column
        if np.any(np.sum(X, axis=0) == N):

            # Report
            print('Intercept is not the last feature. Swapping..')

            # Find which column contains the intercept
            intercept_index = np.argwhere(np.sum(X, axis=0) == N)

            # Swap intercept to last
            X = X[:, np.setdiff1d(np.arange(D), intercept_index)]

        # Add intercept as last column
        X = np.hstack((X, np.ones((N, 1))))

        # Append column of 1's to data, and increment dimensionality
        return X, D+1 
开发者ID:wmkouw,项目名称:libTLDA,代码行数:24,代码来源:tcpr.py

示例2: create

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def create(clz):
        """One-time creation of app's objects.

        This function is called once, and is responsible for
        creating all objects (plots, datasources, etc)
        """
        self = clz()
        n_vals = 1000
        self.source = ColumnDataSource(
            data=dict(
                top=[],
                bottom=0,
                left=[],
                right=[],
                x= np.arange(n_vals),
                values= np.random.randn(n_vals)
                ))

        # Generate a figure container
        self.stock_plot = clz.create_stock(self.source)
        self.update_data()
        self.children.append(self.stock_plot) 
开发者ID:mvaz,项目名称:osqf2015,代码行数:24,代码来源:stock.py

示例3: generate_anchors_pre

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)):
  """ A wrapper function to generate anchors given different scales
    Also return the number of anchors in variable 'length'
  """
  anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
  A = anchors.shape[0]
  shift_x = np.arange(0, width) * feat_stride
  shift_y = np.arange(0, height) * feat_stride
  shift_x, shift_y = np.meshgrid(shift_x, shift_y)
  shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose()
  K = shifts.shape[0]
  # width changes faster, so here it is H, W, C
  anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
  anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
  length = np.int32(anchors.shape[0])

  return anchors, length 
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:19,代码来源:snippets.py

示例4: batch_iter

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def batch_iter(self, data, batch_size, num_epochs, shuffle=True):
        """
        Generates a batch iterator for a dataset.
        """
        data = np.asarray(data)
        print(data)
        print(data.shape)
        data_size = len(data)
        num_batches_per_epoch = int(len(data)/batch_size) + 1
        for epoch in range(num_epochs):
            # Shuffle the data at each epoch
            if shuffle:
                shuffle_indices = np.random.permutation(np.arange(data_size))
                shuffled_data = data[shuffle_indices]
            else:
                shuffled_data = data
            for batch_num in range(num_batches_per_epoch):
                start_index = batch_num * batch_size
                end_index = min((batch_num + 1) * batch_size, data_size)
                yield shuffled_data[start_index:end_index] 
开发者ID:dhwajraj,项目名称:deep-siamese-text-similarity,代码行数:22,代码来源:input_helpers.py

示例5: active_net_list

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def active_net_list(self):
        net_list = [["input", 0, 0]]
        active_cnt = np.arange(self.net_info.input_num + self.net_info.node_num + self.net_info.out_num)
        active_cnt[self.net_info.input_num:] = np.cumsum(self.is_active)

        for n, is_a in enumerate(self.is_active):
            if is_a:
                t = self.gene[n][0]
                if n < self.net_info.node_num:    # intermediate node
                    type_str = self.net_info.func_type[t]
                else:    # output node
                    type_str = self.net_info.out_type[t]

                connections = [active_cnt[self.gene[n][i+1]] for i in range(self.net_info.max_in_num)]
                net_list.append([type_str] + connections)
        return net_list


# CGP with (1 + \lambda)-ES 
开发者ID:sg-nm,项目名称:cgp-cnn,代码行数:21,代码来源:cgp.py

示例6: create_mnist

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def create_mnist(tfrecord_dir, mnist_dir):
    print('Loading MNIST from "%s"' % mnist_dir)
    import gzip
    with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
        images = np.frombuffer(file.read(), np.uint8, offset=16)
    with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file:
        labels = np.frombuffer(file.read(), np.uint8, offset=8)
    images = images.reshape(-1, 1, 28, 28)
    images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0)
    assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8
    assert labels.shape == (60000,) and labels.dtype == np.uint8
    assert np.min(images) == 0 and np.max(images) == 255
    assert np.min(labels) == 0 and np.max(labels) == 9
    onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
    onehot[np.arange(labels.size), labels] = 1.0
    
    with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
        order = tfr.choose_shuffled_order()
        for idx in range(order.size):
            tfr.add_image(images[order[idx]])
        tfr.add_labels(onehot[order])

#---------------------------------------------------------------------------- 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:25,代码来源:dataset_tool.py

示例7: create_cifar100

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def create_cifar100(tfrecord_dir, cifar100_dir):
    print('Loading CIFAR-100 from "%s"' % cifar100_dir)
    import pickle
    with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
        data = pickle.load(file, encoding='latin1')
    images = data['data'].reshape(-1, 3, 32, 32)
    labels = np.array(data['fine_labels'])
    assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
    assert labels.shape == (50000,) and labels.dtype == np.int32
    assert np.min(images) == 0 and np.max(images) == 255
    assert np.min(labels) == 0 and np.max(labels) == 99
    onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
    onehot[np.arange(labels.size), labels] = 1.0

    with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
        order = tfr.choose_shuffled_order()
        for idx in range(order.size):
            tfr.add_image(images[order[idx]])
        tfr.add_labels(onehot[order])

#---------------------------------------------------------------------------- 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:23,代码来源:dataset_tool.py

示例8: test_generate_np_targeted_gives_adversarial_example

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def test_generate_np_targeted_gives_adversarial_example(self):
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        feed_labs = np.zeros((100, 2))
        feed_labs[np.arange(100), np.random.randint(0, 1, 100)] = 1
        x_adv = self.attack.generate_np(x_val, max_iterations=100,
                                        binary_search_steps=3,
                                        initial_const=1,
                                        clip_min=-5, clip_max=5,
                                        batch_size=100, y_target=feed_labs)

        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)

        self.assertTrue(np.mean(np.argmax(feed_labs, axis=1) == new_labs)
                        > 0.9) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:18,代码来源:test_attacks.py

示例9: test_generate_gives_adversarial_example

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def test_generate_gives_adversarial_example(self):

        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        orig_labs = np.argmax(self.sess.run(self.model(x_val)), axis=1)
        feed_labs = np.zeros((100, 2))
        feed_labs[np.arange(100), orig_labs] = 1
        x = tf.placeholder(tf.float32, x_val.shape)
        y = tf.placeholder(tf.float32, feed_labs.shape)

        x_adv_p = self.attack.generate(x, max_iterations=100,
                                       binary_search_steps=3,
                                       initial_const=1,
                                       clip_min=-5, clip_max=5,
                                       batch_size=100, y=y)
        self.assertEqual(x_val.shape, x_adv_p.shape)
        x_adv = self.sess.run(x_adv_p, {x: x_val, y: feed_labs})

        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)

        self.assertTrue(np.mean(orig_labs == new_labs) < 0.1) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:24,代码来源:test_attacks.py

示例10: test_generate_targeted_gives_adversarial_example

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def test_generate_targeted_gives_adversarial_example(self):
        x_val = np.random.rand(100, 2)
        x_val = np.array(x_val, dtype=np.float32)

        feed_labs = np.zeros((100, 2))
        feed_labs[np.arange(100), np.random.randint(0, 1, 100)] = 1
        x = tf.placeholder(tf.float32, x_val.shape)
        y = tf.placeholder(tf.float32, feed_labs.shape)

        x_adv_p = self.attack.generate(x, max_iterations=100,
                                       binary_search_steps=3,
                                       initial_const=1,
                                       clip_min=-5, clip_max=5,
                                       batch_size=100, y_target=y)
        self.assertEqual(x_val.shape, x_adv_p.shape)
        x_adv = self.sess.run(x_adv_p, {x: x_val, y: feed_labs})

        new_labs = np.argmax(self.sess.run(self.model(x_adv)), axis=1)

        self.assertTrue(np.mean(np.argmax(feed_labs, axis=1) == new_labs)
                        > 0.9) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:23,代码来源:test_attacks.py

示例11: to_categorical

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def to_categorical(y, num_classes=None):
    """
    Converts a class vector (integers) to binary class matrix.
    This is adapted from the Keras function with the same name.
    :param y: class vector to be converted into a matrix
              (integers from 0 to num_classes).
    :param num_classes: num_classes: total number of classes.
    :return: A binary matrix representation of the input.
    """
    y = np.array(y, dtype='int').ravel()
    if not num_classes:
        num_classes = np.max(y) + 1
        warnings.warn("FutureWarning: the default value of the second"
                      "argument in function \"to_categorical\" is deprecated."
                      "On 2018-9-19, the second argument"
                      "will become mandatory.")
    n = y.shape[0]
    categorical = np.zeros((n, num_classes))
    categorical[np.arange(n), y] = 1
    return categorical 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:22,代码来源:utils.py

示例12: compute_mfcc

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def compute_mfcc(audio, **kwargs):
    """
    Compute the MFCC for a given audio waveform. This is
    identical to how DeepSpeech does it, but does it all in
    TensorFlow so that we can differentiate through it.
    """

    batch_size, size = audio.get_shape().as_list()
    audio = tf.cast(audio, tf.float32)

    # 1. Pre-emphasizer, a high-pass filter
    audio = tf.concat((audio[:, :1], audio[:, 1:] - 0.97*audio[:, :-1], np.zeros((batch_size,1000),dtype=np.float32)), 1)

    # 2. windowing into frames of 320 samples, overlapping
    windowed = tf.stack([audio[:, i:i+400] for i in range(0,size-320,160)],1)

    # 3. Take the FFT to convert to frequency space
    ffted = tf.spectral.rfft(windowed, [512])
    ffted = 1.0 / 512 * tf.square(tf.abs(ffted))

    # 4. Compute the Mel windowing of the FFT
    energy = tf.reduce_sum(ffted,axis=2)+1e-30
    filters = np.load("filterbanks.npy").T
    feat = tf.matmul(ffted, np.array([filters]*batch_size,dtype=np.float32))+1e-30

    # 5. Take the DCT again, because why not
    feat = tf.log(feat)
    feat = tf.spectral.dct(feat, type=2, norm='ortho')[:,:,:26]

    # 6. Amplify high frequencies for some reason
    _,nframes,ncoeff = feat.get_shape().as_list()
    n = np.arange(ncoeff)
    lift = 1 + (22/2.)*np.sin(np.pi*n/22)
    feat = lift*feat
    width = feat.get_shape().as_list()[1]

    # 7. And now stick the energy next to the features
    feat = tf.concat((tf.reshape(tf.log(energy),(-1,width,1)), feat[:, :, 1:]), axis=2)
    
    return feat 
开发者ID:rtaori,项目名称:Black-Box-Audio,代码行数:42,代码来源:tf_logits.py

示例13: draw_graph

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def draw_graph(self, data_points, varieties):
        """
        Draw all elements of the graph.
        """
        self.fig, self.ax = plt.subplots()
        x = np.arange(0, data_points)
        self.create_lines(x, self.ax, varieties)
        self.ax.legend()
        self.ax.set_title(self.title) 
开发者ID:gcallah,项目名称:indras_net,代码行数:11,代码来源:display_methods.py

示例14: remove_intercept

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def remove_intercept(self, X):
        """Remove 1's from data as last features."""
        # Data shape
        N, D = X.shape

        # Find which column contains the intercept
        intercept_index = []
        for d in range(D):
            if np.all(X[:, d] == 0):
                intercept_index.append(d)

        # Remove intercept columns
        X = X[:, np.setdiff1d(np.arange(D), intercept_index)]

        return X, D-len(intercept_index) 
开发者ID:wmkouw,项目名称:libTLDA,代码行数:17,代码来源:tcpr.py

示例15: project_simplex

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import arange [as 别名]
def project_simplex(self, v, z=1.0):
        """
        Project vector onto simplex using sorting.

        Reference: "Efficient Projections onto the L1-Ball for Learning in High
        Dimensions (Duchi, Shalev-Shwartz, Singer, Chandra, 2006)."

        Parameters
        ----------
        v : array
            vector to be projected (n dimensions by 0)
        z : float
            constant (def: 1.0)

        Returns
        -------
        w : array
            projected vector (n dimensions by 0)

        """
        # Number of dimensions
        n = v.shape[0]

        # Sort vector
        mu = np.sort(v, axis=0)[::-1]

        # Find rho
        C = np.cumsum(mu) - z
        j = np.arange(n) + 1
        rho = j[mu - C/j > 0][-1]

        # Define theta
        theta = C[mu - C/j > 0][-1] / float(rho)

        # Subtract theta from original vector and cap at 0
        w = np.maximum(v - theta, 0)

        # Return projected vector
        return w 
开发者ID:wmkouw,项目名称:libTLDA,代码行数:41,代码来源:tcpr.py


注:本文中的numpy.arange方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。