本文整理汇总了Python中numpy.amax方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.amax方法的具体用法?Python numpy.amax怎么用?Python numpy.amax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.amax方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: prune_non_overlapping_boxes
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def prune_non_overlapping_boxes(boxlist1, boxlist2, minoverlap=0.0):
"""Prunes the boxes in boxlist1 that overlap less than thresh with boxlist2.
For each box in boxlist1, we want its IOA to be more than minoverlap with
at least one of the boxes in boxlist2. If it does not, we remove it.
Args:
boxlist1: BoxList holding N boxes.
boxlist2: BoxList holding M boxes.
minoverlap: Minimum required overlap between boxes, to count them as
overlapping.
Returns:
A pruned boxlist with size [N', 4].
"""
intersection_over_area = ioa(boxlist2, boxlist1) # [M, N] tensor
intersection_over_area = np.amax(intersection_over_area, axis=0) # [N] tensor
keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
keep_inds = np.nonzero(keep_bool)[0]
new_boxlist1 = gather(boxlist1, keep_inds)
return new_boxlist1
示例2: OutlierDetection
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def OutlierDetection(CMat, s):
n = np.amax(s)
_, N = CMat.shape
OutlierIndx = list()
FailCnt = 0
Fail = False
for i in range(0, N):
c = CMat[:, i]
if np.sum(np.isnan(c)) >= 1:
OutlierIndx.append(i)
FailCnt += 1
sc = s.astype(float)
sc[OutlierIndx] = np.nan
CMatC = CMat.astype(float)
CMatC[OutlierIndx, :] = np.nan
CMatC[:, OutlierIndx] = np.nan
OutlierIndx = OutlierIndx
if FailCnt > (N - n):
CMatC = np.nan
sc = np.nan
Fail = True
return CMatC, sc, OutlierIndx, Fail
示例3: get_wmin_wmax_tmax_ia_def
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def get_wmin_wmax_tmax_ia_def(self, tol):
from numpy import log, exp, sqrt, where, amin, amax
"""
This is a default choice of the wmin and wmax parameters for a log grid along
imaginary axis. The default choice is based on the eigenvalues.
"""
E = self.ksn2e[0,0,:]
E_fermi = self.fermi_energy
E_homo = amax(E[where(E<=E_fermi)])
E_gap = amin(E[where(E>E_fermi)]) - E_homo
E_maxdiff = amax(E) - amin(E)
d = amin(abs(E_homo-E)[where(abs(E_homo-E)>1e-4)])
wmin_def = sqrt(tol * (d**3) * (E_gap**3)/(d**2+E_gap**2))
wmax_def = (E_maxdiff**2/tol)**(0.250)
tmax_def = -log(tol)/ (E_gap)
tmin_def = -100*log(1.0-tol)/E_maxdiff
return wmin_def, wmax_def, tmin_def,tmax_def
示例4: si_c_check
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def si_c_check (self, tol = 1e-5):
"""
This compares np.solve and LinearOpt-lgmres methods for solving linear equation (1-v\chi_{0}) * W_c = v\chi_{0}v
"""
import time
import numpy as np
ww = 1j*self.ww_ia
t = time.time()
si0_1 = self.si_c(ww) #method 1: numpy.linalg.solve
t1 = time.time() - t
print('numpy: {} sec'.format(t1))
t2 = time.time()
si0_2 = self.si_c2(ww) #method 2: scipy.sparse.linalg.lgmres
t3 = time.time() - t2
print('lgmres: {} sec'.format(t3))
summ = abs(si0_1 + si0_2).sum()
diff = abs(si0_1 - si0_2).sum()
if diff/summ < tol and diff/si0_1.size < tol:
print('OK! scipy.lgmres methods and np.linalg.solve have identical results')
else:
print('Results (W_c) are NOT similar!')
return [[diff/summ] , [np.amax(abs(diff))] ,[tol]]
#@profile
示例5: __init__
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def __init__(self, ao_log, sp):
self.ion = ao_log.sp2ion[sp]
self.rr,self.pp,self.nr = ao_log.rr,ao_log.pp,ao_log.nr
self.interp_rr = log_interp_c(self.rr)
self.interp_pp = log_interp_c(self.pp)
self.mu2j = ao_log.sp_mu2j[sp]
self.nmult= len(self.mu2j)
self.mu2s = ao_log.sp_mu2s[sp]
self.norbs= self.mu2s[-1]
self.mu2ff = ao_log.psi_log[sp]
self.mu2ff_rl = ao_log.psi_log_rl[sp]
self.mu2rcut = ao_log.sp_mu2rcut[sp]
self.rcut = np.amax(self.mu2rcut)
self.charge = ao_log.sp2charge[sp]
示例6: coords2sort_order
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def coords2sort_order(a2c):
""" Delivers a list of atom indices which generates a near-diagonal overlap for a given set of atom coordinates """
na = a2c.shape[0]
aa2d = squareform(pdist(a2c))
mxd = np.amax(aa2d)+1.0
a = 0
lsa = []
for ia in range(na):
lsa.append(a)
asrt = np.argsort(aa2d[a])
for ja in range(1,na):
b = asrt[ja]
if b not in lsa: break
aa2d[a,b] = aa2d[b,a] = mxd
a = b
return np.array(lsa)
示例7: test_gw
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def test_gw(self):
""" This is GW """
mol = gto.M(verbose=0, atom='''Ag 0 0 -0.3707; Ag 0 0 0.3707''', basis = 'cc-pvdz-pp',)
gto_mf = scf.RHF(mol)#.density_fit()
gto_mf.kernel()
#print('gto_mf.mo_energy:', gto_mf.mo_energy)
s = nao(mf=gto_mf, gto=mol, verbosity=0)
oref = s.overlap_coo().toarray()
#print('s.norbs:', s.norbs, oref.sum())
pb = prod_basis(nao=s, algorithm='fp')
pab2v = pb.get_ac_vertex_array()
mom0,mom1=pb.comp_moments()
orec = np.einsum('p,pab->ab', mom0, pab2v)
self.assertTrue(np.allclose(orec,oref, atol=1e-3), \
"{} {}".format(abs(orec-oref).sum()/oref.size, np.amax(abs(orec-oref))))
示例8: spatial_heatmap
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def spatial_heatmap(array, path, title=None, color="Greens", figformat="png"):
"""Taking channel information and creating post run channel activity plots."""
logging.info("Nanoplotter: Creating heatmap of reads per channel using {} reads."
.format(array.size))
activity_map = Plot(
path=path + "." + figformat,
title="Number of reads generated per channel")
layout = make_layout(maxval=np.amax(array))
valueCounts = pd.value_counts(pd.Series(array))
for entry in valueCounts.keys():
layout.template[np.where(layout.structure == entry)] = valueCounts[entry]
plt.figure()
ax = sns.heatmap(
data=pd.DataFrame(layout.template, index=layout.yticks, columns=layout.xticks),
xticklabels="auto",
yticklabels="auto",
square=True,
cbar_kws={"orientation": "horizontal"},
cmap=color,
linewidths=0.20)
ax.set_title(title or activity_map.title)
activity_map.fig = ax.get_figure()
activity_map.save(format=figformat)
plt.close("all")
return [activity_map]
示例9: optimally_reblocked
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def optimally_reblocked(data):
"""
Find optimal reblocking of input data. Takes in pandas
DataFrame of raw data to reblock, returns DataFrame
of reblocked data.
"""
opt = opt_block(data)
n_reblock = int(np.amax(opt))
rb_data = reblock_by2(data, n_reblock)
serr = rb_data.sem(axis=0)
d = {
"mean": rb_data.mean(axis=0),
"standard error": serr,
"standard error error": serr / np.sqrt(2 * (len(rb_data) - 1)),
"reblocks": n_reblock,
}
return pd.DataFrame(d)
示例10: prune_non_overlapping_masks
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def prune_non_overlapping_masks(box_mask_list1, box_mask_list2, minoverlap=0.0):
"""Prunes the boxes in list1 that overlap less than thresh with list2.
For each mask in box_mask_list1, we want its IOA to be more than minoverlap
with at least one of the masks in box_mask_list2. If it does not, we remove
it. If the masks are not full size image, we do the pruning based on boxes.
Args:
box_mask_list1: np_box_mask_list.BoxMaskList holding N boxes and masks.
box_mask_list2: np_box_mask_list.BoxMaskList holding M boxes and masks.
minoverlap: Minimum required overlap between boxes, to count them as
overlapping.
Returns:
A pruned box_mask_list with size [N', 4].
"""
intersection_over_area = ioa(box_mask_list2, box_mask_list1) # [M, N] tensor
intersection_over_area = np.amax(intersection_over_area, axis=0) # [N] tensor
keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
keep_inds = np.nonzero(keep_bool)[0]
new_box_mask_list1 = gather(box_mask_list1, keep_inds)
return new_box_mask_list1
示例11: train
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def train(self, batch_size=32):
# Train using replay experience
minibatch = random.sample(self.memory, batch_size)
for memory in minibatch:
state, action, reward, state_next, done = memory
# Build Q target:
# -> Qtarget[!action] = Q[!action]
# Qtarget[action] = reward + gamma * max[a'](Q_next(state_next))
Qtarget = self.model.predict(state)
dQ = reward
if not done:
dQ += self.gamma * np.amax(self.model.predict(state_next)[0])
Qtarget[0][action] = dQ
self.model.fit(state, Qtarget, epochs=1, verbose=0)
# Decary exploration after training
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
示例12: guess_normal
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def guess_normal(universe, group):
"""
Guess the normal of a liquid slab
"""
universe.atoms.pack_into_box()
dim = universe.coord.dimensions
delta = []
for direction in range(0, 3):
histo, _ = np.histogram(
group.positions[:, direction],
bins=5,
range=(0, dim[direction]),
density=True)
max_val = np.amax(histo)
min_val = np.amin(histo)
delta.append(np.sqrt((max_val - min_val)**2))
if np.max(delta) / np.min(delta) < 5.0:
print("Warning: the result of the automatic normal detection (",
np.argmax(delta), ") is not reliable")
return np.argmax(delta)
示例13: input_fn
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def input_fn(df):
"""Format the downloaded data."""
# Creates a dictionary mapping from each continuous feature column name (k)
# to the values of that column stored in a constant Tensor.
continuous_cols = [df[k].values for k in CONTINUOUS_COLUMNS]
X_con = np.stack(continuous_cols).astype(np.float32).T
# Standardise
X_con -= X_con.mean(axis=0)
X_con /= X_con.std(axis=0)
# Creates a dictionary mapping from each categorical feature column name
categ_cols = [np.where(pd.get_dummies(df[k]).values)[1][:, np.newaxis]
for k in CATEGORICAL_COLUMNS]
n_values = [np.amax(c) + 1 for c in categ_cols]
X_cat = np.concatenate(categ_cols, axis=1).astype(np.int32)
# Converts the label column into a constant Tensor.
label = df[LABEL_COLUMN].values[:, np.newaxis]
# Returns the feature columns and the label.
return X_con, X_cat, n_values, label
示例14: refine_room_region
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def refine_room_region(cw_mask, rm_ind):
label_rm, num_label = ndimage.label((1-cw_mask))
new_rm_ind = np.zeros(rm_ind.shape)
for j in xrange(1, num_label+1):
mask = (label_rm == j).astype(np.uint8)
ys, xs = np.where(mask!=0)
area = (np.amax(xs)-np.amin(xs))*(np.amax(ys)-np.amin(ys))
if area < 100:
continue
else:
room_types, type_counts = np.unique(mask*rm_ind, return_counts=True)
if len(room_types) > 1:
room_types = room_types[1:] # ignore background type which is zero
type_counts = type_counts[1:] # ignore background count
new_rm_ind += mask*room_types[np.argmax(type_counts)]
return new_rm_ind
示例15: get_heatmap
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import amax [as 别名]
def get_heatmap(self, target_size):
heatmap = np.zeros((CocoMetadata.__coco_parts, self.height, self.width), dtype=np.float32)
for joints in self.joint_list:
for idx, point in enumerate(joints):
if point[0] < 0 or point[1] < 0:
continue
CocoMetadata.put_heatmap(heatmap, idx, point, self.sigma)
heatmap = heatmap.transpose((1, 2, 0))
# background
heatmap[:, :, -1] = np.clip(1 - np.amax(heatmap, axis=2), 0.0, 1.0)
if target_size:
heatmap = cv2.resize(heatmap, target_size, interpolation=cv2.INTER_AREA)
return heatmap.astype(np.float16)