本文整理汇总了Python中numpy.all方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.all方法的具体用法?Python numpy.all怎么用?Python numpy.all使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.all方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: is_pos_def
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def is_pos_def(self, A):
"""
Check for positive definiteness.
Parameters
---------
A : array
square symmetric matrix.
Returns
-------
bool
whether matrix is positive-definite.
Warning! Returns false for arrays containing inf or NaN.
"""
# Check for valid numbers
if np.any(np.isnan(A)) or np.any(np.isinf(A)):
return False
else:
return np.all(np.real(np.linalg.eigvals(A)) > 0)
示例2: test_one_hot
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def test_one_hot():
"""Check if one_hot returns correct label matrices."""
# Generate label vector
y = np.hstack((np.ones((10,))*0,
np.ones((10,))*1,
np.ones((10,))*2))
# Map to matrix
Y, labels = one_hot(y)
# Check for only 0's and 1's
assert len(np.setdiff1d(np.unique(Y), [0, 1])) == 0
# Check for correct labels
assert np.all(labels == np.unique(y))
# Check correct shape of matrix
assert Y.shape[0] == y.shape[0]
assert Y.shape[1] == len(labels)
示例3: test_region_init
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def test_region_init():
region = Region(
name='test',
description='region description',
west_bound=0.,
east_bound=5,
south_bound=0,
north_bound=90.,
do_land_mask=True
)
assert region.name == 'test'
assert region.description == 'region description'
assert isinstance(region.mask_bounds, tuple)
assert len(region.mask_bounds) == 1
assert isinstance(region.mask_bounds[0], BoundsRect)
assert np.all(region.mask_bounds[0] ==
(Longitude(0.), Longitude(5), 0, 90.))
assert region.do_land_mask is True
示例4: find_match
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def find_match(self, pred, gt):
'''
Match component to balls.
'''
batch_size, n_frames_input, n_components, _ = pred.shape
diff = pred.reshape(batch_size, n_frames_input, n_components, 1, 2) - \
gt.reshape(batch_size, n_frames_input, 1, n_components, 2)
diff = np.sum(np.sum(diff ** 2, axis=-1), axis=1)
# Direct indices
indices = np.argmin(diff, axis=2)
ambiguous = np.zeros(batch_size, dtype=np.int8)
for i in range(batch_size):
_, counts = np.unique(indices[i], return_counts=True)
if not np.all(counts == 1):
ambiguous[i] = 1
return indices, ambiguous
示例5: test_bounds
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def test_bounds(self):
"""
Test that out-of-bounds coordinates return NaN reddening, and that
in-bounds coordinates do not return NaN reddening.
"""
for mode in (['random_sample', 'random_sample_per_pix',
'median', 'samples', 'mean']):
# Draw random coordinates, both above and below dec = -30 degree line
n_pix = 1000
ra = -180. + 360.*np.random.random(n_pix)
dec = -75. + 90.*np.random.random(n_pix) # 45 degrees above/below
c = coords.SkyCoord(ra, dec, frame='icrs', unit='deg')
ebv_calc = self._bayestar(c, mode=mode)
nan_below = np.isnan(ebv_calc[dec < -35.])
nan_above = np.isnan(ebv_calc[dec > -25.])
pct_nan_above = np.sum(nan_above) / float(nan_above.size)
# print r'{:s}: {:.5f}% nan above dec=-25 deg.'.format(mode, 100.*pct_nan_above)
self.assertTrue(np.all(nan_below))
self.assertTrue(pct_nan_above < 0.05)
示例6: map_values
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def map_values(values, pos, target_pos, dtype=None, nan=dat.CPG_NAN):
"""Maps `values` array at positions `pos` to `target_pos`.
Inserts `nan` for uncovered positions.
"""
assert len(values) == len(pos)
assert np.all(pos == np.sort(pos))
assert np.all(target_pos == np.sort(target_pos))
values = values.ravel()
pos = pos.ravel()
target_pos = target_pos.ravel()
idx = np.in1d(pos, target_pos)
pos = pos[idx]
values = values[idx]
if not dtype:
dtype = values.dtype
target_values = np.empty(len(target_pos), dtype=dtype)
target_values.fill(nan)
idx = np.in1d(target_pos, pos).nonzero()[0]
assert len(idx) == len(values)
assert np.all(target_pos[idx] == pos)
target_values[idx] = values
return target_values
示例7: image_to_cortex
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def image_to_cortex(self, image,
surface='midgray', hemi=None, affine=Ellipsis, method=None, fill=0,
dtype=None, weights=None):
'''
sub.image_to_cortex(image) is equivalent to the tuple
(sub.lh.from_image(image), sub.rh.from_image(image)).
sub.image_to_cortex(image, surface) uses the given surface (see also cortex.surface).
'''
if hemi is None: hemi = 'both'
hemi = hemi.lower()
if hemi in ['both', 'lr', 'all', 'auto']:
return tuple(
[self.image_to_cortex(image, surface=surface, hemi=h, affine=affine,
method=method, fill=fill, dtype=dtype, weights=weights)
for h in ['lh', 'rh']])
else:
hemi = getattr(self, hemi)
return hemi.from_image(image, surface=surface, affine=affine,
method=method, fill=fill, dtype=dtype, weights=weights)
示例8: get_constraint_value
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def get_constraint_value(self, applyMultiframePrior=True):
"""
Compute all partial Structure Factor (SQs).
:Parameters:
#. applyMultiframePrior (boolean): Whether to apply subframe weight
and prior to the total. This will only have an effect when used
frame is a subframe and in case subframe weight and prior is
defined.
:Returns:
#. SQs (dictionary): The SQs dictionnary, where keys are the
element wise intra and inter molecular SQs and values are
the computed SQs.
"""
if self.data is None:
LOGGER.warn("data must be computed first using 'compute_data' method.")
return {}
return self._get_constraint_value(self.data, applyMultiframePrior=applyMultiframePrior)
示例9: getImgIds
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def getImgIds(self, imgIds=[], catIds=[]):
'''
Get img ids that satisfy given filter conditions.
:param imgIds (int array) : get imgs for given ids
:param catIds (int array) : get imgs with all given cats
:return: ids (int array) : integer array of img ids
'''
imgIds = imgIds if type(imgIds) == list else [imgIds]
catIds = catIds if type(catIds) == list else [catIds]
if len(imgIds) == len(catIds) == 0:
ids = self.imgs.keys()
else:
ids = set(imgIds)
for i, catId in enumerate(catIds):
if i == 0 and len(ids) == 0:
ids = set(self.catToImgs[catId])
else:
ids &= set(self.catToImgs[catId])
return list(ids)
示例10: annToRLE
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def annToRLE(self, ann):
"""
Convert annotation which can be polygons, uncompressed RLE to RLE.
:return: binary mask (numpy 2D array)
"""
t = self.imgs[ann['image_id']]
h, w = t['height'], t['width']
segm = ann['segmentation']
if type(segm) == list:
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
# rles = maskUtils.frPyObjects(segm, h, w)
# rle = maskUtils.merge(rles)
raise NotImplementedError("maskUtils disabled!")
elif type(segm['counts']) == list:
# uncompressed RLE
# rle = maskUtils.frPyObjects(segm, h, w)
raise NotImplementedError("maskUtils disabled!")
else:
# rle
rle = ann['segmentation']
return rle
示例11: test_module_input_grads
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def test_module_input_grads():
a = mx.sym.Variable('a', __layout__='NC')
b = mx.sym.Variable('b', __layout__='NC')
c = mx.sym.Variable('c', __layout__='NC')
c = a + 2 * b + 3 * c
net = mx.mod.Module(c, data_names=['b', 'c', 'a'], label_names=None,
context=[mx.cpu(0), mx.cpu(1)])
net.bind(data_shapes=[['b', (5, 5)], ['c', (5, 5)], ['a', (5, 5)]],
label_shapes=None, inputs_need_grad=True)
net.init_params()
net.forward(data_batch=mx.io.DataBatch(data=[nd.ones((5, 5)),
nd.ones((5, 5)),
nd.ones((5, 5))]))
net.backward(out_grads=[nd.ones((5, 5))])
input_grads = net.get_input_grads()
b_grad = input_grads[0].asnumpy()
c_grad = input_grads[1].asnumpy()
a_grad = input_grads[2].asnumpy()
assert np.all(a_grad == 1), a_grad
assert np.all(b_grad == 2), b_grad
assert np.all(c_grad == 3), c_grad
示例12: test_module_reshape
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def test_module_reshape():
data = mx.sym.Variable('data')
sym = mx.sym.FullyConnected(data, num_hidden=20, name='fc')
dshape = (7, 20)
mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)])
mod.bind(data_shapes=[('data', dshape)])
mod.init_params()
mod.init_optimizer(optimizer_params={'learning_rate': 1})
mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)],
label=None))
mod.backward([mx.nd.ones(dshape)])
mod.update()
assert mod.get_outputs()[0].shape == dshape
assert (mod.get_params()[0]['fc_bias'].asnumpy() == -1).all()
dshape = (14, 20)
mod.reshape(data_shapes=[('data', dshape)])
mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)],
label=None))
mod.backward([mx.nd.ones(dshape)])
mod.update()
assert mod.get_outputs()[0].shape == dshape
assert (mod.get_params()[0]['fc_bias'].asnumpy() == -3).all()
示例13: test_sparse_nd_setitem
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def test_sparse_nd_setitem():
def check_sparse_nd_setitem(stype, shape, dst):
x = mx.nd.zeros(shape=shape, stype=stype)
x[:] = dst
dst_nd = mx.nd.array(dst) if isinstance(dst, (np.ndarray, np.generic)) else dst
assert np.all(x.asnumpy() == dst_nd.asnumpy() if isinstance(dst_nd, NDArray) else dst)
shape = rand_shape_2d()
for stype in ['row_sparse', 'csr']:
# ndarray assignment
check_sparse_nd_setitem(stype, shape, rand_ndarray(shape, 'default'))
check_sparse_nd_setitem(stype, shape, rand_ndarray(shape, stype))
# numpy assignment
check_sparse_nd_setitem(stype, shape, np.ones(shape))
# scalar assigned to row_sparse NDArray
check_sparse_nd_setitem('row_sparse', shape, 2)
示例14: _project_to_map
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def _project_to_map(map, vertex, wt=None, ignore_points_outside_map=False):
"""Projects points to map, returns how many points are present at each
location."""
num_points = np.zeros((map.size[1], map.size[0]))
vertex_ = vertex[:, :2] - map.origin
vertex_ = np.round(vertex_ / map.resolution).astype(np.int)
if ignore_points_outside_map:
good_ind = np.all(np.array([vertex_[:,1] >= 0, vertex_[:,1] < map.size[1],
vertex_[:,0] >= 0, vertex_[:,0] < map.size[0]]),
axis=0)
vertex_ = vertex_[good_ind, :]
if wt is not None:
wt = wt[good_ind, :]
if wt is None:
np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), 1)
else:
assert(wt.shape[0] == vertex.shape[0]), \
'number of weights should be same as vertices.'
np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), wt)
return num_points
示例15: raw_valid_fn_vec
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import all [as 别名]
def raw_valid_fn_vec(self, xyt):
"""Returns if the given set of nodes is valid or not."""
height = self.traversible.shape[0]
width = self.traversible.shape[1]
x = np.round(xyt[:,[0]]).astype(np.int32)
y = np.round(xyt[:,[1]]).astype(np.int32)
is_inside = np.all(np.concatenate((x >= 0, y >= 0,
x < width, y < height), axis=1), axis=1)
x = np.minimum(np.maximum(x, 0), width-1)
y = np.minimum(np.maximum(y, 0), height-1)
ind = np.ravel_multi_index((y,x), self.traversible.shape)
is_traversible = self.traversible.ravel()[ind]
is_valid = np.all(np.concatenate((is_inside[:,np.newaxis], is_traversible),
axis=1), axis=1)
return is_valid