本文整理汇总了Python中numpy.RandomState方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.RandomState方法的具体用法?Python numpy.RandomState怎么用?Python numpy.RandomState使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.RandomState方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: randomstate_constructor
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def randomstate_constructor(value, name=None, strict=False,
allow_downcast=None, borrow=False):
"""
SharedVariable Constructor for RandomState.
"""
if not isinstance(value, numpy.random.RandomState):
raise TypeError
if not borrow:
value = copy.deepcopy(value)
return RandomStateSharedVariable(
type=raw_random.random_state_type,
value=value,
name=name,
strict=strict,
allow_downcast=allow_downcast)
示例2: seed
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def seed(self, seed=None):
"""
Re-initialize each random stream.
Parameters
----------
seed : None or integer in range 0 to 2**30
Each random stream will be assigned a unique state that depends
deterministically on this value.
Returns
-------
None
"""
if seed is None:
seed = self.default_instance_seed
seedgen = numpy.random.RandomState(seed)
for old_r, new_r in self.state_updates:
old_r_seed = seedgen.randint(2 ** 30)
old_r.set_value(numpy.random.RandomState(int(old_r_seed)),
borrow=True)
示例3: __getitem__
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def __getitem__(self, item):
"""
Retrieve the numpy RandomState instance associated with a particular
stream.
Parameters
----------
item
A variable of type RandomStateType, associated
with this RandomStream.
Returns
-------
numpy RandomState (or None, before initialize)
Notes
-----
This is kept for compatibility with `tensor.randomstreams.RandomStreams`.
The simpler syntax ``item.rng.get_value()`` is also valid.
"""
return item.get_value(borrow=True)
示例4: __setitem__
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def __setitem__(self, item, val):
"""
Set the numpy RandomState instance associated with a particular stream.
Parameters
----------
item
A variable of type RandomStateType, associated with this
RandomStream.
val : numpy RandomState
The new value.
Returns
-------
None
Notes
-----
This is kept for compatibility with `tensor.randomstreams.RandomStreams`.
The simpler syntax ``item.rng.set_value(val)`` is also valid.
"""
item.set_value(val, borrow=True)
示例5: np_zero_pad_slice
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def np_zero_pad_slice(slice, window_size, random_state):
""" Pads slice to the specified window size.
Series that are shorter than window_size are repeated into unfilled space.
Args:
slice: np.array.
window_size: int
Size the array must be padded to.
random_state: np.RandomState
Returns:
a numpy array of length window_size in the first dimension.
TODO: this function has an inaccurate name, really this is doing
pad_repeat_slice with a random offset for data augmentation.
Rename or remove at next cleanup since it doesn't appear to be
used..
"""
slice_length = len(slice)
delta = window_size - slice_length
assert delta >= 0
offset = random_state.randint(0, delta + 1)
return np.concatenate([slice] * reps, axis=0)[offset:offset+window_size]
示例6: _check_random_state
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def _check_random_state(seed):
"""Turn seed into a np.random.RandomState instance. Note: credit for this code goes entirely to sklearn.utils.check_random_state. Using the source here simply avoids an unecessary dependency.
Args:
seed (None, int, np.RandomState): iff seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError.
"""
import numbers
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (numbers.Integral, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError(
"%r cannot be used to seed a numpy.random.RandomState" " instance" % seed
)
示例7: __init__
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def __init__(self, seed=None):
super(RandomStreams, self).__init__()
# A list of pairs of the form (input_r, output_r). This will be
# over-ridden by the module instance to contain stream generators.
self.state_updates = []
# Instance variable should take None or integer value. Used to seed the
# random number generator that provides seeds for member streams.
self.default_instance_seed = seed
# numpy.RandomState instance that gen() uses to seed new streams.
self.gen_seedgen = numpy.random.RandomState(seed)
示例8: gamma_soft_dtw
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def gamma_soft_dtw(dataset, n_samples=100, random_state=None):
r"""Compute gamma value to be used for GAK/Soft-DTW.
This method was originally presented in [1]_.
Parameters
----------
dataset
A dataset of time series
n_samples : int (default: 100)
Number of samples on which median distance should be estimated
random_state : integer or numpy.RandomState or None (default: None)
The generator used to draw the samples. If an integer is given, it
fixes the seed. Defaults to the global numpy random number generator.
Returns
-------
float
Suggested :math:`\gamma` parameter for the Soft-DTW
Examples
--------
>>> dataset = [[1, 2, 2, 3], [1., 2., 3., 4.]]
>>> gamma_soft_dtw(dataset=dataset,
... n_samples=200,
... random_state=0) # doctest: +ELLIPSIS
8.0...
See Also
--------
sigma_gak : Compute sigma parameter for Global Alignment kernel
References
----------
.. [1] M. Cuturi, "Fast global alignment kernels," ICML 2011.
"""
return 2. * sigma_gak(dataset=dataset,
n_samples=n_samples,
random_state=random_state) ** 2
示例9: ensure_rng
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def ensure_rng(random_state=None):
"""
Creates a random number generator based on an optional seed. This can be
an integer or another random state for a seeded rng, or None for an
unseeded rng.
"""
if random_state is None:
random_state = np.random.RandomState()
elif isinstance(random_state, int):
random_state = np.random.RandomState(random_state)
else:
assert isinstance(random_state, np.random.RandomState)
return random_state
示例10: np_pad_repeat_slice_2
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def np_pad_repeat_slice_2(slice, window_size, random_state):
""" Pads slice to the specified window size then rolls them.
Series that are shorter than window_size are repeated into unfilled space,
then the series is randomly rolled along the time axis to generate more
training diversity. This has the side effect of adding a non-physical
seam in the data, but in practice seems to work better than not rolling.
Similar to `np_pad_repeat_slice` except for rolling the sequence along the
time axis.
Args:
slice: a numpy array.
window_size: the size the array must be padded to.
random_state: a numpy RandomState object.
Returns:
a numpy array of length window_size in the first dimension.
"""
slice_length = len(slice)
delta = window_size - slice_length
assert delta >= 0
slice = slice.copy()
GAP_LOGDT = 100
slice[0, 1] = GAP_LOGDT
reps = int(np.ceil(window_size / float(slice_length)))
repeated = np.concatenate([slice] * reps, axis=0)
offset = random_state.randint(0, window_size)
return np.roll(repeated, offset, axis=0)[:window_size]
示例11: _permute_sign
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def _permute_sign(data, seed, return_stat="mean"):
"""Given a list/array of data, randomly sign flip the values and compute a new mean. For use in one-sample permutation test. Returns a 'mean' or 't-stat'."""
random_state = np.random.RandomState(seed)
new_dat = data * random_state.choice([1, -1], len(data))
if return_stat == "ceof":
return np.mean(new_dat)
elif return_stat == "t-stat":
return np.mean(new_dat) / (np.std(new_dat, ddof=1) / np.sqrt(len(new_dat)))
示例12: _threshold_from_tpr
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def _threshold_from_tpr(roc, tpr_target, rng):
"""Returns a `RandomizedThreshold` that achieves `tpr_target`.
For an arbitrary value of tpr_target in [0, 1], there may not be a single
threshold that achieves that tpr_value on our data. In this case, we
interpolate between the two closest achievable points on the discrete ROC
curve.
See e.g., Theorem 1 of Scott et al (1998)
"Maximum realisable performance: a principled method for enhancing
performance by using multiple classifiers in variable cost problem domains"
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/Scott_tr320.pdf
Args:
roc: A tuple (fpr, tpr, thresholds) as returned by sklearn's roc_curve
function.
tpr_target: A float between [0, 1], the target value of TPR that we would
like to achieve.
rng: A `np.RandomState` object that will be used in the returned
RandomizedThreshold.
Return: A RandomizedThreshold that achieves the target TPR value.
"""
# First filter out points that are not on the convex hull.
_, tpr_list, thresh_list = convex_hull_roc(roc)
idx = bisect.bisect_left(tpr_list, tpr_target)
# TPR target is larger than any of the TPR values in the list. In this case,
# take the highest threshold possible.
if idx == len(tpr_list):
return RandomizedThreshold(
weights=[1], values=[thresh_list[-1]], rng=rng, tpr_target=tpr_target)
# TPR target is exactly achievable by an existing threshold. In this case,
# do not randomize between two different thresholds. Use a single threshold
# with probability 1.
if tpr_list[idx] == tpr_target:
return RandomizedThreshold(
weights=[1], values=[thresh_list[idx]], rng=rng, tpr_target=tpr_target)
# Interpolate between adjacent thresholds. Since we are only considering
# points on the convex hull of the roc curve, we only need to consider
# interpolating between pairs of adjacent points.
alpha = _interpolate(x=tpr_target, low=tpr_list[idx - 1], high=tpr_list[idx])
return RandomizedThreshold(
weights=[alpha, 1 - alpha],
values=[thresh_list[idx - 1], thresh_list[idx]],
rng=rng,
tpr_target=tpr_target)
示例13: sigma_gak
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def sigma_gak(dataset, n_samples=100, random_state=None):
r"""Compute sigma value to be used for GAK.
This method was originally presented in [1]_.
Parameters
----------
dataset
A dataset of time series
n_samples : int (default: 100)
Number of samples on which median distance should be estimated
random_state : integer or numpy.RandomState or None (default: None)
The generator used to draw the samples. If an integer is given, it
fixes the seed. Defaults to the global numpy random number generator.
Returns
-------
float
Suggested bandwidth (:math:`\sigma`) for the Global Alignment kernel
Examples
--------
>>> dataset = [[1, 2, 2, 3], [1., 2., 3., 4.]]
>>> sigma_gak(dataset=dataset,
... n_samples=200,
... random_state=0) # doctest: +ELLIPSIS
2.0...
See Also
--------
gak : Compute Global Alignment kernel
cdist_gak : Compute cross-similarity matrix using Global Alignment kernel
References
----------
.. [1] M. Cuturi, "Fast global alignment kernels," ICML 2011.
"""
random_state = check_random_state(random_state)
dataset = to_time_series_dataset(dataset)
n_ts, sz, d = dataset.shape
if not check_equal_size(dataset):
sz = numpy.min([ts_size(ts) for ts in dataset])
if n_ts * sz < n_samples:
replace = True
else:
replace = False
sample_indices = random_state.choice(n_ts * sz,
size=n_samples,
replace=replace)
dists = pdist(dataset[:, :sz, :].reshape((-1, d))[sample_indices],
metric="euclidean")
return numpy.median(dists) * numpy.sqrt(sz)
示例14: random_walks
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def random_walks(n_ts=100, sz=256, d=1, mu=0., std=1., random_state=None):
"""Random walk time series generator.
Generate n_ts time series of size sz and dimensionality d.
Generated time series follow the model:
.. math::
ts[t] = ts[t - 1] + a
where :math:`a` is drawn from a normal distribution of mean mu and standard
deviation std.
Parameters
----------
n_ts : int (default: 100)
Number of time series.
sz : int (default: 256)
Length of time series (number of time instants).
d : int (default: 1)
Dimensionality of time series.
mu : float (default: 0.)
Mean of the normal distribution from which random walk steps are drawn.
std : float (default: 1.)
Standard deviation of the normal distribution from which random walk
steps are drawn.
random_state : integer or numpy.RandomState or None (default: None)
Generator used to draw the time series. If an integer is given, it
fixes the seed. Defaults to the global
numpy random number generator.
Returns
-------
numpy.ndarray
A dataset of random walk time series
Examples
--------
>>> random_walks(n_ts=100, sz=256, d=5, mu=0., std=1.).shape
(100, 256, 5)
"""
rs = check_random_state(random_state)
ts = numpy.empty((n_ts, sz, d))
rnd = rs.randn(n_ts, sz, d) * std + mu
ts[:, 0, :] = rnd[:, 0, :]
for t in range(1, sz):
ts[:, t, :] = ts[:, t - 1, :] + rnd[:, t, :]
return ts
示例15: random_walk_blobs
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import RandomState [as 别名]
def random_walk_blobs(n_ts_per_blob=100, sz=256, d=1, n_blobs=2,
noise_level=1., random_state=None):
"""Blob-based random walk time series generator.
Generate n_ts_per_blobs * n_blobs time series of size sz and
dimensionality d.
Generated time series follow the model:
.. math::
ts[t] = ts[t - 1] + a
where :math:`a` is drawn from a normal distribution of mean mu and
standard deviation std.
Each blob contains time series derived from a same seed time series with
added white noise.
Parameters
----------
n_ts_per_blob : int (default: 100)
Number of time series in each blob
sz : int (default: 256)
Length of time series (number of time instants)
d : int (default: 1)
Dimensionality of time series
n_blobs : int (default: 2)
Number of blobs
noise_level : float (default: 1.)
Standard deviation of white noise added to time series in each blob
random_state : integer or numpy.RandomState or None (default: None)
Generator used to draw the time series. If an integer is given, it
fixes the seed. Defaults to the global
numpy random number generator.
Returns
-------
numpy.ndarray
A dataset of random walk time series
numpy.ndarray
Labels associated to random walk time series (blob id)
Examples
--------
>>> X, y = random_walk_blobs(n_ts_per_blob=100, sz=256, d=5, n_blobs=3)
>>> X.shape
(300, 256, 5)
>>> y.shape
(300,)
"""
rs = check_random_state(random_state)
base_ts = random_walks(n_ts=n_blobs, sz=sz, d=d, std=1.0, random_state=rs)
rnd = rs.randn(n_ts_per_blob * n_blobs, sz, d) * noise_level
ts = numpy.repeat(base_ts, repeats=n_ts_per_blob, axis=0)
y = numpy.repeat(range(n_blobs), repeats=n_ts_per_blob)
return ts + rnd, y