本文整理汇总了Python中numdifftools.Hessian方法的典型用法代码示例。如果您正苦于以下问题:Python numdifftools.Hessian方法的具体用法?Python numdifftools.Hessian怎么用?Python numdifftools.Hessian使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numdifftools
的用法示例。
在下文中一共展示了numdifftools.Hessian方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: check_gradient
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def check_gradient(f, x):
print(x, "\n", f(x))
print("# grad2")
grad2 = Gradient(f)(x)
print("# building grad1")
g = grad(f)
print("# computing grad1")
grad1 = g(x)
print("gradient1\n", grad1, "\ngradient2\n", grad2)
np.allclose(grad1, grad2)
# check Hessian vector product
y = np.random.normal(size=x.shape)
gdot = lambda u: np.dot(g(u), y)
hess1, hess2 = grad(gdot)(x), Gradient(gdot)(x)
print("hess1\n", hess1, "\nhess2\n", hess2)
np.allclose(hess1, hess2)
示例2: get_hessian
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def get_hessian(function, point, minima, maxima):
wrapper, scaled_deltas, scaled_point, orders_of_magnitude, n_dim = _get_wrapper(
function, point, minima, maxima
)
# Compute the Hessian matrix at best_fit_values
hessian_matrix_ = nd.Hessian(wrapper, scaled_deltas)(scaled_point)
# Transform it to numpy matrix
hessian_matrix = np.array(hessian_matrix_)
# Now correct back the Hessian for the scales
for i in range(n_dim):
for j in range(n_dim):
hessian_matrix[i, j] /= orders_of_magnitude[i] * orders_of_magnitude[j]
return hessian_matrix
示例3: profile_hessian
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def profile_hessian(n_values=(4, 8, 16, 32, 64, 96)):
for n in n_values:
f = BenchmarkFunction(n)
step = nd.step_generators.one_step
cls = nd.Hessian(f, step=step, method='central')
follow = [cls._derivative_nonzero_order,
cls._apply_fd_rule,
cls._get_finite_difference_rule,
cls._vstack,
cls._central_even]
# cls = nds.Hessian(f, step=None, method='central')
# follow = [cls._derivative_nonzero_order, ]
x = 3 * np.ones(n)
do_profile(follow=follow)(cls)(x)
示例4: fisher
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def fisher(model, variables=None):
'''
Calculates the covariance matrix of the variables, given the model.
The model needs to have been optimized for this to work.
'''
if variables is None:
keys = model._hidden.keys()
variables = model._hidden.values()
def func(xs):
feed = { k: v for k, v in zip(variables, xs) }
out = model.session.run(model._nll, feed_dict=feed)
if np.isnan(out):
return 1e100
return out
x = model.session.run(list(model._hidden.values()))
hess = Hessian(func)(x)
cov = np.linalg.inv(hess)
result = dict()
for i, v1 in enumerate(keys):
result[v1] = dict()
for j, v2 in enumerate(keys):
result[v1][v2] = cov[i,j]
return result
示例5: information
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def information(self, params):
"""
Fisher information matrix of model
Returns -Hessian of loglike evaluated at params.
"""
raise NotImplementedError
示例6: hessian
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def hessian(self, params):
"""
The Hessian matrix of the model
"""
raise NotImplementedError
示例7: approx_hess_cs
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def approx_hess_cs(x, f, epsilon=None, args=(), kwargs={}):
'''Calculate Hessian with complex-step derivative approximation
Parameters
----------
x : array_like
value at which function derivative is evaluated
f : function
function of one array f(x)
epsilon : float
stepsize, if None, then stepsize is automatically chosen
Returns
-------
hess : ndarray
array of partial second derivatives, Hessian
Notes
-----
based on equation 10 in
M. S. RIDOUT: Statistical Applications of the Complex-step Method
of Numerical Differentiation, University of Kent, Canterbury, Kent, U.K.
The stepsize is the same for the complex and the finite difference part.
'''
# TODO: might want to consider lowering the step for pure derivatives
n = len(x)
h = _get_epsilon(x, 3, epsilon, n)
ee = np.diag(h)
hess = np.outer(h, h)
n = len(x)
for i in range(n):
for j in range(i, n):
hess[i, j] = (f(*((x + 1j*ee[i, :] + ee[j, :],) + args), **kwargs)
- f(*((x + 1j*ee[i, :] - ee[j, :],)+args),
**kwargs)).imag/2./hess[i, j]
hess[j, i] = hess[i, j]
return hess
示例8: approx_hess_cs_old
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def approx_hess_cs_old(x, func, args=(), h=1.0e-20, epsilon=1e-6):
def grad(x):
return approx_fprime_cs(x, func, args=args, h=1.0e-20)
#Hessian from gradient:
return (approx_fprime(x, grad, epsilon)
+ approx_fprime(x, grad, -epsilon))/2.
示例9: hessian
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def hessian(
func,
params,
method="central",
extrapolation=True,
func_kwargs=None,
step_options=None,
):
"""
Calculate the hessian of *func*.
Args:
func (function): A function that maps params into a float.
params (DataFrame): see :ref:`params`
method (string): The method for the computation of the derivative. Default is
central as it gives the highest accuracy.
extrapolation (bool): Use richardson extrapolations.
func_kwargs (dict): additional positional arguments for func.
step_options (dict): Options for the numdifftools step generator.
See :ref:`step_options`
Returns:
DataFrame: The index and columns are the index of params. The data is
the estimated hessian.
"""
step_options = step_options if step_options is not None else {}
if method != "central":
raise ValueError("Only the method 'central' is supported.")
func_kwargs = {} if func_kwargs is None else func_kwargs
internal_func = _create_internal_func(func, params, func_kwargs)
params_value = params["value"].to_numpy()
if extrapolation:
hess_np = nd.Hessian(internal_func, method=method, **step_options)(params_value)
else:
hess_np = _no_extrapolation_hessian(internal_func, params_value, method)
return pd.DataFrame(data=hess_np, index=params.index, columns=params.index)
示例10: _laplace_fit
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def _laplace_fit(self,obj_type):
""" Performs a Laplace approximation to the posterior
Parameters
----------
obj_type : method
Whether a likelihood or a posterior
Returns
----------
None (plots posterior)
"""
# Get Mode and Inverse Hessian information
y = self.fit(method='PML',printer=False)
if y.ihessian is None:
raise Exception("No Hessian information - Laplace approximation cannot be performed")
else:
self.latent_variables.estimation_method = 'Laplace'
theta, Y, scores, states, states_var, X_names = self._categorize_model_output(self.latent_variables.get_z_values())
# Change this in future
try:
latent_variables_store = self.latent_variables.copy()
except:
latent_variables_store = self.latent_variables
return LaplaceResults(data_name=self.data_name,X_names=X_names,model_name=self.model_name,
model_type=self.model_type, latent_variables=latent_variables_store,data=Y,index=self.index,
multivariate_model=self.multivariate_model,objective_object=obj_type,
method='Laplace',ihessian=y.ihessian,signal=theta,scores=scores,
z_hide=self._z_hide,max_lag=self.max_lag,states=states,states_var=states_var)
示例11: _nnlf
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def _nnlf(self, theta):
# This is used to calculate the variance-covariance matrix using the
# Hessian from numdifftools
# see self._ci_delta() method below
x = self.data
# Here we provide code for the GEV distribution and for the special
# case when shape parameter is 0 (Gumbel distribution).
if len(theta) == 3:
c = theta[0]
loc = theta[1]
scale = theta[2]
if len(theta) == 2:
c = 0
loc = theta[0]
scale = theta[1]
if c != 0:
expr = 1. + c * ((x - loc) / scale)
return (len(x) * _np.log(scale) +
(1. + 1. / c) * _np.sum(_np.log(expr)) +
_np.sum(expr ** (-1. / c)))
else:
expr = (x - loc) / scale
return (len(x) * _np.log(scale) +
_np.sum(expr) +
_np.sum(_np.exp(-expr)))
示例12: _optimize_fit
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def _optimize_fit(self, obj_type=None, **kwargs):
"""
This function fits models using Maximum Likelihood or Penalized Maximum Likelihood
"""
preopt_search = kwargs.get('preopt_search', True) # If user supplied
if obj_type == self.neg_loglik:
method = 'MLE'
else:
method = 'PML'
# Starting values - check to see if model has preoptimize method, if not, simply use default starting values
if preopt_search is True:
try:
phi = self._preoptimize_model(self.latent_variables.get_z_starting_values(), method)
preoptimized = True
except:
phi = self.latent_variables.get_z_starting_values()
preoptimized = False
else:
preoptimized = False
phi = self.latent_variables.get_z_starting_values()
phi = kwargs.get('start',phi).copy() # If user supplied
# Optimize using L-BFGS-B
p = optimize.minimize(obj_type, phi, method='L-BFGS-B', options={'gtol': 1e-8})
if preoptimized is True:
p2 = optimize.minimize(obj_type, self.latent_variables.get_z_starting_values(), method='L-BFGS-B',
options={'gtol': 1e-8})
if self.neg_loglik(p2.x) < self.neg_loglik(p.x):
p = p2
theta, Y, scores, states, states_var, X_names = self._categorize_model_output(p.x)
# Check that matrix is non-singular; act accordingly
try:
ihessian = np.linalg.inv(nd.Hessian(obj_type)(p.x))
ses = np.power(np.abs(np.diag(ihessian)),0.5)
self.latent_variables.set_z_values(p.x,method,ses,None)
except:
ihessian = None
ses = None
self.latent_variables.set_z_values(p.x,method,None,None)
self.latent_variables.estimation_method = method
# Change this in future
try:
latent_variables_store = self.latent_variables.copy()
except:
latent_variables_store = self.latent_variables
return MLEResults(data_name=self.data_name,X_names=X_names,model_name=self.model_name,
model_type=self.model_type, latent_variables=latent_variables_store,results=p,data=Y, index=self.index,
multivariate_model=self.multivariate_model,objective_object=obj_type,
method=method,ihessian=ihessian,signal=theta,scores=scores,
z_hide=self._z_hide,max_lag=self.max_lag,states=states,states_var=states_var)
示例13: _ci_delta
# 需要导入模块: import numdifftools [as 别名]
# 或者: from numdifftools import Hessian [as 别名]
def _ci_delta(self):
# Calculate the variance-covariance matrix using the
# hessian from numdifftools
# This is used to obtain confidence intervals for the estimators and
# the return values for several return values.
#
# More info about the delta method can be found on:
# - Coles, Stuart: "An Introduction to Statistical Modeling of
# Extreme Values", Springer (2001)
# - https://en.wikipedia.org/wiki/Delta_method
# data
c = -self.c # We negate the shape to avoid inconsistency problems!?
loc = self.loc
scale = self.scale
hess = _ndt.Hessian(self._nnlf)
T = _np.arange(0.1, 500.1, 0.1)
sT = -_np.log(1.-self.frec/T)
sT2 = self.distr.isf(self.frec/T)
# VarCovar matrix and confidence values for estimators and return values
# Confidence interval for return values (up values and down values)
ci_Tu = _np.zeros(sT.shape)
ci_Td = _np.zeros(sT.shape)
if c: # If c then we are calculating GEV confidence intervals
varcovar = _np.linalg.inv(hess([c, loc, scale]))
self.params_ci = OrderedDict()
se = _np.sqrt(_np.diag(varcovar))
self._se = se
self.params_ci['shape'] = (self.c - _st.norm.ppf(1 - self.ci / 2) * se[0],
self.c + _st.norm.ppf(1 - self.ci / 2) * se[0])
self.params_ci['location'] = (self.loc - _st.norm.ppf(1 - self.ci / 2) * se[1],
self.loc + _st.norm.ppf(1 - self.ci / 2) * se[1])
self.params_ci['scale'] = (self.scale - _st.norm.ppf(1 - self.ci / 2) * se[2],
self.scale + _st.norm.ppf(1 - self.ci / 2) * se[2])
for i, val in enumerate(sT2):
gradZ = [scale * (c**-2) * (1 - sT[i] ** (-c)) - scale * (c**-1) * (sT[i]**-c) * _np.log(sT[i]),
1,
-(1 - sT[i] ** (-c)) / c]
se = _np.dot(_np.dot(gradZ, varcovar), _np.array(gradZ).T)
ci_Tu[i] = val + _st.norm.ppf(1 - self.ci / 2) * _np.sqrt(se)
ci_Td[i] = val - _st.norm.ppf(1 - self.ci / 2) * _np.sqrt(se)
else: # else then we are calculating Gumbel confidence intervals
varcovar = _np.linalg.inv(hess([loc, scale]))
self.params_ci = OrderedDict()
se = _np.sqrt(_np.diag(varcovar))
self._se = se
self.params_ci['shape'] = (0, 0)
self.params_ci['location'] = (self.loc - _st.norm.ppf(1 - self.ci / 2) * se[0],
self.loc + _st.norm.ppf(1 - self.ci / 2) * se[0])
self.params_ci['scale'] = (self.scale - _st.norm.ppf(1 - self.ci / 2) * se[1],
self.scale + _st.norm.ppf(1 - self.ci / 2) * se[1])
for i, val in enumerate(sT2):
gradZ = [1, -_np.log(sT[i])]
se = _np.dot(_np.dot(gradZ, varcovar), _np.array(gradZ).T)
ci_Tu[i] = val + _st.norm.ppf(1 - self.ci / 2) * _np.sqrt(se)
ci_Td[i] = val - _st.norm.ppf(1 - self.ci / 2) * _np.sqrt(se)
self._ci_Tu = ci_Tu
self._ci_Td = ci_Td