当前位置: 首页>>代码示例>>Python>>正文


Python regexp.WhitespaceTokenizer方法代码示例

本文整理汇总了Python中nltk.tokenize.regexp.WhitespaceTokenizer方法的典型用法代码示例。如果您正苦于以下问题:Python regexp.WhitespaceTokenizer方法的具体用法?Python regexp.WhitespaceTokenizer怎么用?Python regexp.WhitespaceTokenizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nltk.tokenize.regexp的用法示例。


在下文中一共展示了regexp.WhitespaceTokenizer方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: demo_sent_subjectivity

# 需要导入模块: from nltk.tokenize import regexp [as 别名]
# 或者: from nltk.tokenize.regexp import WhitespaceTokenizer [as 别名]
def demo_sent_subjectivity(text):
    """
    Classify a single sentence as subjective or objective using a stored
    SentimentAnalyzer.

    :param text: a sentence whose subjectivity has to be classified.
    """
    from nltk.classify import NaiveBayesClassifier
    from nltk.tokenize import regexp
    word_tokenizer = regexp.WhitespaceTokenizer()
    try:
        sentim_analyzer = load('sa_subjectivity.pickle')
    except LookupError:
        print('Cannot find the sentiment analyzer you want to load.')
        print('Training a new one using NaiveBayesClassifier.')
        sentim_analyzer = demo_subjectivity(NaiveBayesClassifier.train, True)

    # Tokenize and convert to lower case
    tokenized_text = [word.lower() for word in word_tokenizer.tokenize(text)]
    print(sentim_analyzer.classify(tokenized_text)) 
开发者ID:sdoran35,项目名称:hate-to-hugs,代码行数:22,代码来源:util.py

示例2: __init__

# 需要导入模块: from nltk.tokenize import regexp [as 别名]
# 或者: from nltk.tokenize.regexp import WhitespaceTokenizer [as 别名]
def __init__(self, use_unicode):
        self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
        self.repl = r'\1\2\3'
        self.tokenizer = WhitespaceTokenizer()
        self.cached_stopwords = stopwords.words('english')
        self.symbols = [u"\"", u"'", u"!", u"?", u".", u",", u";", u">", u"_", u"<", u"-", u"[",
                        u"]", u"{", u"}", u"/", u"\\", u"^", u"~", u"", u"`", u"``", u"\u2026",
                        u":", u"(", u")", u"|", u"#", u"$", u"%", u"&", u"*", u"=", u"+", u"\u2013",
                        u"\u201c", u"\u201d", u"\u300b\u300b", u"\u2019", u"\u2018", u"\u00b0",
                        u"\u00ba", u"\u200b", u"\u00b7", u"\u2014", u"\u00bb", u"\u221a", u"\u00aa",
                        u"\ufe0f", u"\u2794", u"\u2192", u"\u00a8", u"\u2022", u"\u300a", u"\u00bf",
                        u"\u25a0", u"\u00af", u"\u22b3", u"\u2060", u"\u261b", u"\u00ad", u"\u00ab"]
        if use_unicode:
            self.accents = unicode_replace
        else:
            self.accents = ascii_replace
        self.link_patterns = [('http'), ('www'), ('w3c')]
        self.digraph = [(r'hash','#'),(r'rxr','rr'),(r'sxs','ss'),(r'aqa','aa'),(r'eqe','ee'),(r'oqo','oo'),(r'fqf','ff'),(r'gqg','gg'),(r'cqc','cc'),(r'dqd','dd'),
                        (r'mqm','mm'),(r'nqn','nn'),(r'pqp','pp'),(r'dqd','dd'),(r'tqt','tt'),(r'fqf','ff'),(r'lql','ll')]

    # Remover caracteres repetidos seguidamente, para que o modelo no seja prejudicado
    # por falta de padro na escrita. 
开发者ID:gustavoaires,项目名称:minetext,代码行数:24,代码来源:englishprocessor.py

示例3: __init__

# 需要导入模块: from nltk.tokenize import regexp [as 别名]
# 或者: from nltk.tokenize.regexp import WhitespaceTokenizer [as 别名]
def __init__(self, use_unicode=True):
        self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
        self.repl = r'\1\2\3'
        self.pt_stemmer = nltk.stem.RSLPStemmer()
        self.tokenizer = WhitespaceTokenizer()
        self.cached_stopwords = stopwords.words('portuguese')
        self.symbols = [u"\"", u"'", u"!", u"?", u".", u",", u";", u">", u"_", u"<", u"-", u"[",
                        u"]", u"{", u"}", u"/", u"\\", u"^", u"~", u"",  u"`", u"``", u"\u2026",
                        u":", u"(", u")", u"|", u"#", u"$", u"%", u"&", u"*", u"=", u"+", u"\u2013",
                        u"\u201c", u"\u201d", u"\u300b", u"\u2019", u"\u2018", u"\u00b0", u"\u30fb",
                        u"\u00ba", u"\u200b", u"\u00b7", u"\u2014", u"\u00bb", u"\u221a", u"\u00aa",
                        u"\ufe0f", u"\u2794", u"\u2192", u"\u00a8", u"\u2022", u"\u300a", u"\u00bf",
                        u"\u25a0", u"\u00af", u"\u22b3", u"\u2060", u"\u261b", u"\u00ad", u"\u00ab"]
        self.more_stopwords = ['ja', 'q', 'd', 'ai', 'desse', 'dessa', 'disso', 'nesse', 'nessa', 'nisso', 'esse', 'essa', 'isso', 'so', 'mt', 'vc', 'voce', 'ne', 'ta', 'to', 'pq',
                               'cade', 'kd', 'la', 'e', 'eh', 'dai', 'pra', 'vai', 'olha', 'pois', 'rt', 'retweeted',
                               'fica', 'muito', 'muita', 'muitos', 'muitas', 'onde', 'mim', 'oi', 'ola', 'ate']
        if use_unicode:
            self.accents = unicode_replace
        else:
            self.accents = ascii_replace
        self.link_patterns = [('http'), ('www'), ('w3c'), ('https')]
        self.normal = [(r'kxkxk', 'kkk'), (r'nao ', ' nao_'), (r' ir ', '_ir '), (r'bom demal', ' bomdemais '), (r'\s*insan\s*', ' insano '), (r'\s*saudad\s*', ' saudade ')]
        self.digraph = [(r'rxr', 'rr'), (r'sxs', 'ss'), (r'aqa', 'aa'), (r'eqe', 'ee'), (r'oqo', 'oo')]

    # Remover caracteres repetidos seguidamente, para que o modelo no seja prejudicado
    # por falta de padro na escrita. 
开发者ID:gustavoaires,项目名称:minetext,代码行数:28,代码来源:portugueseprocessor.py

示例4: demo_subjectivity

# 需要导入模块: from nltk.tokenize import regexp [as 别名]
# 或者: from nltk.tokenize.regexp import WhitespaceTokenizer [as 别名]
def demo_subjectivity(trainer, save_analyzer=False, n_instances=None, output=None):
    """
    Train and test a classifier on instances of the Subjective Dataset by Pang and
    Lee. The dataset is made of 5000 subjective and 5000 objective sentences.
    All tokens (words and punctuation marks) are separated by a whitespace, so
    we use the basic WhitespaceTokenizer to parse the data.

    :param trainer: `train` method of a classifier.
    :param save_analyzer: if `True`, store the SentimentAnalyzer in a pickle file.
    :param n_instances: the number of total sentences that have to be used for
        training and testing. Sentences will be equally split between positive
        and negative.
    :param output: the output file where results have to be reported.
    """
    from nltk.sentiment import SentimentAnalyzer
    from nltk.corpus import subjectivity

    if n_instances is not None:
        n_instances = int(n_instances/2)

    subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]]
    obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]]

    # We separately split subjective and objective instances to keep a balanced
    # uniform class distribution in both train and test sets.
    train_subj_docs, test_subj_docs = split_train_test(subj_docs)
    train_obj_docs, test_obj_docs = split_train_test(obj_docs)

    training_docs = train_subj_docs+train_obj_docs
    testing_docs = test_subj_docs+test_obj_docs

    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])

    # Add simple unigram word features handling negation
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)

    # Apply features to obtain a feature-value representation of our datasets
    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    classifier = sentim_analyzer.train(trainer, training_set)
    try:
        classifier.show_most_informative_features()
    except AttributeError:
        print('Your classifier does not provide a show_most_informative_features() method.')
    results = sentim_analyzer.evaluate(test_set)

    if save_analyzer == True:
        save_file(sentim_analyzer, 'sa_subjectivity.pickle')

    if output:
        extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
        output_markdown(output, Dataset='subjectivity', Classifier=type(classifier).__name__,
                        Tokenizer='WhitespaceTokenizer', Feats=extr,
                        Instances=n_instances, Results=results)

    return sentim_analyzer 
开发者ID:Thejas-1,项目名称:Price-Comparator,代码行数:61,代码来源:util.py

示例5: demo_subjectivity

# 需要导入模块: from nltk.tokenize import regexp [as 别名]
# 或者: from nltk.tokenize.regexp import WhitespaceTokenizer [as 别名]
def demo_subjectivity(trainer, save_analyzer=False, n_instances=None, output=None):
    """
    Train and test a classifier on instances of the Subjective Dataset by Pang and
    Lee. The dataset is made of 5000 subjective and 5000 objective sentences.
    All tokens (words and punctuation marks) are separated by a whitespace, so
    we use the basic WhitespaceTokenizer to parse the data.

    :param trainer: `train` method of a classifier.
    :param save_analyzer: if `True`, store the SentimentAnalyzer in a pickle file.
    :param n_instances: the number of total sentences that have to be used for
        training and testing. Sentences will be equally split between positive
        and negative.
    :param output: the output file where results have to be reported.
    """
    from sentiment_analyzer import SentimentAnalyzer
    from nltk.corpus import subjectivity

    if n_instances is not None:
        n_instances = int(n_instances/2)

    subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]]
    obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]]

    # We separately split subjective and objective instances to keep a balanced
    # uniform class distribution in both train and test sets.
    train_subj_docs, test_subj_docs = split_train_test(subj_docs)
    train_obj_docs, test_obj_docs = split_train_test(obj_docs)

    training_docs = train_subj_docs+train_obj_docs
    testing_docs = test_subj_docs+test_obj_docs

    sentim_analyzer = SentimentAnalyzer()
    all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])

    # Add simple unigram word features handling negation
    unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
    sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)

    # Apply features to obtain a feature-value representation of our datasets
    training_set = sentim_analyzer.apply_features(training_docs)
    test_set = sentim_analyzer.apply_features(testing_docs)

    classifier = sentim_analyzer.train(trainer, training_set)
    try:
        classifier.show_most_informative_features()
    except AttributeError:
        print('Your classifier does not provide a show_most_informative_features() method.')
    results = sentim_analyzer.evaluate(test_set)

    if save_analyzer == True:
        save_file(sentim_analyzer, 'sa_subjectivity.pickle')

    if output:
        extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
        output_markdown(output, Dataset='subjectivity', Classifier=type(classifier).__name__,
                        Tokenizer='WhitespaceTokenizer', Feats=extr,
                        Instances=n_instances, Results=results)

    return sentim_analyzer 
开发者ID:jarrellmark,项目名称:neighborhood_mood_aws,代码行数:61,代码来源:util.py


注:本文中的nltk.tokenize.regexp.WhitespaceTokenizer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。