当前位置: 首页>>代码示例>>Python>>正文


Python metrics.TrigramAssocMeasures方法代码示例

本文整理汇总了Python中nltk.metrics.TrigramAssocMeasures方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.TrigramAssocMeasures方法的具体用法?Python metrics.TrigramAssocMeasures怎么用?Python metrics.TrigramAssocMeasures使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nltk.metrics的用法示例。


在下文中一共展示了metrics.TrigramAssocMeasures方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: demo

# 需要导入模块: from nltk import metrics [as 别名]
# 或者: from nltk.metrics import TrigramAssocMeasures [as 别名]
def demo(scorer=None, compare_scorer=None):
    """Finds bigram collocations in the files of the WebText corpus."""
    from nltk.metrics import BigramAssocMeasures, spearman_correlation, ranks_from_scores

    if scorer is None:
        scorer = BigramAssocMeasures.likelihood_ratio
    if compare_scorer is None:
        compare_scorer = BigramAssocMeasures.raw_freq

    from nltk.corpus import stopwords, webtext

    ignored_words = stopwords.words('english')
    word_filter = lambda w: len(w) < 3 or w.lower() in ignored_words

    for file in webtext.fileids():
        words = [word.lower()
                 for word in webtext.words(file)]

        cf = BigramCollocationFinder.from_words(words)
        cf.apply_freq_filter(3)
        cf.apply_word_filter(word_filter)

        corr = spearman_correlation(ranks_from_scores(cf.score_ngrams(scorer)),
                                    ranks_from_scores(cf.score_ngrams(compare_scorer)))
        print(file)
        print('\t', [' '.join(tup) for tup in cf.nbest(scorer, 15)])
        print('\t Correlation to %s: %0.4f' % (compare_scorer.__name__, corr))

# Slows down loading too much
# bigram_measures = BigramAssocMeasures()
# trigram_measures = TrigramAssocMeasures() 
开发者ID:Thejas-1,项目名称:Price-Comparator,代码行数:33,代码来源:collocations.py

示例2: demo

# 需要导入模块: from nltk import metrics [as 别名]
# 或者: from nltk.metrics import TrigramAssocMeasures [as 别名]
def demo(scorer=None, compare_scorer=None):
    """Finds bigram collocations in the files of the WebText corpus."""
    from nltk.metrics import BigramAssocMeasures, spearman_correlation, ranks_from_scores

    if scorer is None:
        scorer = BigramAssocMeasures.likelihood_ratio
    if compare_scorer is None:
        compare_scorer = BigramAssocMeasures.raw_freq

    from nltk.corpus import stopwords, webtext

    ignored_words = stopwords.words('english')
    word_filter = lambda w: len(w) < 3 or w.lower() in ignored_words

    for file in webtext.fileids():
        words = [word.lower()
                 for word in webtext.words(file)]

        cf = BigramCollocationFinder.from_words(words)
        cf.apply_freq_filter(3)
        cf.apply_word_filter(word_filter)

        print(file)
        print('\t', [' '.join(tup) for tup in cf.nbest(scorer, 15)])
        print('\t Correlation to %s: %0.4f' % (compare_scorer.__name__,
                                               spearman_correlation(
                                                   ranks_from_scores(cf.score_ngrams(scorer)),
                                                   ranks_from_scores(cf.score_ngrams(compare_scorer)))))

# Slows down loading too much
# bigram_measures = BigramAssocMeasures()
# trigram_measures = TrigramAssocMeasures() 
开发者ID:EastonLee,项目名称:FancyWord,代码行数:34,代码来源:collocations.py


注:本文中的nltk.metrics.TrigramAssocMeasures方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。