当前位置: 首页>>代码示例>>Python>>正文


Python compat.imap方法代码示例

本文整理汇总了Python中nltk.compat.imap方法的典型用法代码示例。如果您正苦于以下问题:Python compat.imap方法的具体用法?Python compat.imap怎么用?Python compat.imap使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nltk.compat的用法示例。


在下文中一共展示了compat.imap方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test

# 需要导入模块: from nltk import compat [as 别名]
# 或者: from nltk.compat import imap [as 别名]
def test(self, test_sequence, verbose=False, **kwargs):
        """
        Tests the HiddenMarkovModelTagger instance.

        :param test_sequence: a sequence of labeled test instances
        :type test_sequence: list(list)
        :param verbose: boolean flag indicating whether training should be
            verbose or include printed output
        :type verbose: bool
        """

        def words(sent):
            return [word for (word, tag) in sent]

        def tags(sent):
            return [tag for (word, tag) in sent]

        def flatten(seq):
            return list(itertools.chain(*seq))

        test_sequence = self._transform(test_sequence)
        predicted_sequence = list(imap(self._tag, imap(words, test_sequence)))

        if verbose:
            for test_sent, predicted_sent in izip(test_sequence, predicted_sequence):
                print('Test:',
                    ' '.join('%s/%s' % (token, tag)
                             for (token, tag) in test_sent))
                print()
                print('Untagged:',
                    ' '.join("%s" % token for (token, tag) in test_sent))
                print()
                print('HMM-tagged:',
                    ' '.join('%s/%s' % (token, tag)
                              for (token, tag) in predicted_sent))
                print()
                print('Entropy:',
                    self.entropy([(token, None) for
                                  (token, tag) in predicted_sent]))
                print()
                print('-' * 60)

        test_tags = flatten(imap(tags, test_sequence))
        predicted_tags = flatten(imap(tags, predicted_sequence))

        acc = accuracy(test_tags, predicted_tags)
        count = sum(len(sent) for sent in test_sequence)
        print('accuracy over %d tokens: %.2f' % (count, acc * 100)) 
开发者ID:Thejas-1,项目名称:Price-Comparator,代码行数:50,代码来源:hmm.py


注:本文中的nltk.compat.imap方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。