本文整理汇总了Python中nltk.classify.NaiveBayesClassifier.train方法的典型用法代码示例。如果您正苦于以下问题:Python NaiveBayesClassifier.train方法的具体用法?Python NaiveBayesClassifier.train怎么用?Python NaiveBayesClassifier.train使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nltk.classify.NaiveBayesClassifier
的用法示例。
在下文中一共展示了NaiveBayesClassifier.train方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: split_train_test
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def split_train_test(all_instances, n=None):
"""
Randomly split `n` instances of the dataset into train and test sets.
:param all_instances: a list of instances (e.g. documents) that will be split.
:param n: the number of instances to consider (in case we want to use only a
subset).
:return: two lists of instances. Train set is 8/10 of the total and test set
is 2/10 of the total.
"""
random.seed(12345)
random.shuffle(all_instances)
if not n or n > len(all_instances):
n = len(all_instances)
train_set = all_instances[:int(.8*n)]
test_set = all_instances[int(.8*n):n]
return train_set, test_set
示例2: demo_sent_subjectivity
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def demo_sent_subjectivity(text):
"""
Classify a single sentence as subjective or objective using a stored
SentimentAnalyzer.
:param text: a sentence whose subjectivity has to be classified.
"""
from nltk.classify import NaiveBayesClassifier
from nltk.tokenize import regexp
word_tokenizer = regexp.WhitespaceTokenizer()
try:
sentim_analyzer = load('sa_subjectivity.pickle')
except LookupError:
print('Cannot find the sentiment analyzer you want to load.')
print('Training a new one using NaiveBayesClassifier.')
sentim_analyzer = demo_subjectivity(NaiveBayesClassifier.train, True)
# Tokenize and convert to lower case
tokenized_text = [word.lower() for word in word_tokenizer.tokenize(text)]
print(sentim_analyzer.classify(tokenized_text))
示例3: __init__
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def __init__(
self,
train=None,
model=None,
affix_length=-3,
min_stem_length=2,
backoff=None,
cutoff=0,
verbose=False,
):
self._check_params(train, model)
ContextTagger.__init__(self, model, backoff)
self._affix_length = affix_length
self._min_word_length = min_stem_length + abs(affix_length)
if train:
self._train(train, cutoff, verbose)
示例4: split_train_test
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def split_train_test(all_instances, n=None):
"""
Randomly split `n` instances of the dataset into train and test sets.
:param all_instances: a list of instances (e.g. documents) that will be split.
:param n: the number of instances to consider (in case we want to use only a
subset).
:return: two lists of instances. Train set is 8/10 of the total and test set
is 2/10 of the total.
"""
random.seed(12345)
random.shuffle(all_instances)
if not n or n > len(all_instances):
n = len(all_instances)
train_set = all_instances[: int(0.8 * n)]
test_set = all_instances[int(0.8 * n) : n]
return train_set, test_set
示例5: demo_sent_subjectivity
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def demo_sent_subjectivity(text):
"""
Classify a single sentence as subjective or objective using a stored
SentimentAnalyzer.
:param text: a sentence whose subjectivity has to be classified.
"""
from nltk.classify import NaiveBayesClassifier
from nltk.tokenize import regexp
word_tokenizer = regexp.WhitespaceTokenizer()
try:
sentim_analyzer = load('sa_subjectivity.pickle')
except LookupError:
print('Cannot find the sentiment analyzer you want to load.')
print('Training a new one using NaiveBayesClassifier.')
sentim_analyzer = demo_subjectivity(NaiveBayesClassifier.train, True)
# Tokenize and convert to lower case
tokenized_text = [word.lower() for word in word_tokenizer.tokenize(text)]
print(sentim_analyzer.classify(tokenized_text))
示例6: __init__
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def __init__(self, n, train=None, model=None,
backoff=None, cutoff=0, verbose=False):
self._n = n
self._check_params(train, model)
ContextTagger.__init__(self, model, backoff)
if train:
self._train(train, cutoff, verbose)
示例7: train
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def train(self, graphs):
"""
:type graphs: list(DependencyGraph)
:param graphs: A list of dependency graphs to train the scorer.
Typically the edges present in the graphs can be used as
positive training examples, and the edges not present as negative
examples.
"""
raise NotImplementedError()
示例8: hall_demo
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def hall_demo():
npp = ProbabilisticNonprojectiveParser()
npp.train([], DemoScorer())
for parse_graph in npp.parse(['v1', 'v2', 'v3'], [None, None, None]):
print(parse_graph)
示例9: nonprojective_conll_parse_demo
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def nonprojective_conll_parse_demo():
from nltk.parse.dependencygraph import conll_data2
graphs = [
DependencyGraph(entry) for entry in conll_data2.split('\n\n') if entry
]
npp = ProbabilisticNonprojectiveParser()
npp.train(graphs, NaiveBayesDependencyScorer())
for parse_graph in npp.parse(['Cathy', 'zag', 'hen', 'zwaaien', '.'], ['N', 'V', 'Pron', 'Adj', 'N', 'Punc']):
print(parse_graph)
示例10: train
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def train(cls,
docs: Collection[Document],
cutoff: float = 0.1,
idf_table: Optional[Mapping[Word, float]] = None,
) -> 'NaiveBayesSummarizer':
"""Train the model on a collection of documents.
Args:
docs (Collection[Document]): The collection of documents to train on.
cutoff (float): Cutoff for signature words.
idf_table (Mapping[Word, float]): Precomputed IDF table. If not given, the IDF
will be computed from ``docs``.
Returns:
NaiveBayes: The trained model.
"""
# Find signature words
idf = cls._compute_idf(docs) if idf_table is None else idf_table
n_cutoff = int(cutoff * len(idf))
signature_words = set(sorted(
idf.keys(), key=lambda w: idf[w], reverse=True)[:n_cutoff])
train_data = [] # type: list
for doc in docs:
featuresets = cls._extract_featuresets(doc, signature_words)
labels = [sent.label for sent in doc.sentences]
train_data.extend(zip(featuresets, labels))
return cls(
NaiveBayesClassifier.train(train_data), signature_words=signature_words)
示例11: nonprojective_conll_parse_demo
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def nonprojective_conll_parse_demo():
from nltk.parse.dependencygraph import conll_data2
graphs = [DependencyGraph(entry) for entry in conll_data2.split('\n\n') if entry]
npp = ProbabilisticNonprojectiveParser()
npp.train(graphs, NaiveBayesDependencyScorer())
for parse_graph in npp.parse(
['Cathy', 'zag', 'hen', 'zwaaien', '.'], ['N', 'V', 'Pron', 'Adj', 'N', 'Punc']
):
print(parse_graph)
示例12: demo_movie_reviews
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def demo_movie_reviews(trainer, n_instances=None, output=None):
"""
Train classifier on all instances of the Movie Reviews dataset.
The corpus has been preprocessed using the default sentence tokenizer and
WordPunctTokenizer.
Features are composed of:
- most frequent unigrams
:param trainer: `train` method of a classifier.
:param n_instances: the number of total reviews that have to be used for
training and testing. Reviews will be equally split between positive and
negative.
:param output: the output file where results have to be reported.
"""
from nltk.corpus import movie_reviews
from sentiment_analyzer import SentimentAnalyzer
if n_instances is not None:
n_instances = int(n_instances/2)
pos_docs = [(list(movie_reviews.words(pos_id)), 'pos') for pos_id in movie_reviews.fileids('pos')[:n_instances]]
neg_docs = [(list(movie_reviews.words(neg_id)), 'neg') for neg_id in movie_reviews.fileids('neg')[:n_instances]]
# We separately split positive and negative instances to keep a balanced
# uniform class distribution in both train and test sets.
train_pos_docs, test_pos_docs = split_train_test(pos_docs)
train_neg_docs, test_neg_docs = split_train_test(neg_docs)
training_docs = train_pos_docs+train_neg_docs
testing_docs = test_pos_docs+test_neg_docs
sentim_analyzer = SentimentAnalyzer()
all_words = sentim_analyzer.all_words(training_docs)
# Add simple unigram word features
unigram_feats = sentim_analyzer.unigram_word_feats(all_words, min_freq=4)
sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
# Apply features to obtain a feature-value representation of our datasets
training_set = sentim_analyzer.apply_features(training_docs)
test_set = sentim_analyzer.apply_features(testing_docs)
classifier = sentim_analyzer.train(trainer, training_set)
try:
classifier.show_most_informative_features()
except AttributeError:
print('Your classifier does not provide a show_most_informative_features() method.')
results = sentim_analyzer.evaluate(test_set)
if output:
extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
output_markdown(output, Dataset='Movie_reviews', Classifier=type(classifier).__name__,
Tokenizer='WordPunctTokenizer', Feats=extr, Results=results,
Instances=n_instances)
示例13: demo_subjectivity
# 需要导入模块: from nltk.classify import NaiveBayesClassifier [as 别名]
# 或者: from nltk.classify.NaiveBayesClassifier import train [as 别名]
def demo_subjectivity(trainer, save_analyzer=False, n_instances=None, output=None):
"""
Train and test a classifier on instances of the Subjective Dataset by Pang and
Lee. The dataset is made of 5000 subjective and 5000 objective sentences.
All tokens (words and punctuation marks) are separated by a whitespace, so
we use the basic WhitespaceTokenizer to parse the data.
:param trainer: `train` method of a classifier.
:param save_analyzer: if `True`, store the SentimentAnalyzer in a pickle file.
:param n_instances: the number of total sentences that have to be used for
training and testing. Sentences will be equally split between positive
and negative.
:param output: the output file where results have to be reported.
"""
from sentiment_analyzer import SentimentAnalyzer
from nltk.corpus import subjectivity
if n_instances is not None:
n_instances = int(n_instances/2)
subj_docs = [(sent, 'subj') for sent in subjectivity.sents(categories='subj')[:n_instances]]
obj_docs = [(sent, 'obj') for sent in subjectivity.sents(categories='obj')[:n_instances]]
# We separately split subjective and objective instances to keep a balanced
# uniform class distribution in both train and test sets.
train_subj_docs, test_subj_docs = split_train_test(subj_docs)
train_obj_docs, test_obj_docs = split_train_test(obj_docs)
training_docs = train_subj_docs+train_obj_docs
testing_docs = test_subj_docs+test_obj_docs
sentim_analyzer = SentimentAnalyzer()
all_words_neg = sentim_analyzer.all_words([mark_negation(doc) for doc in training_docs])
# Add simple unigram word features handling negation
unigram_feats = sentim_analyzer.unigram_word_feats(all_words_neg, min_freq=4)
sentim_analyzer.add_feat_extractor(extract_unigram_feats, unigrams=unigram_feats)
# Apply features to obtain a feature-value representation of our datasets
training_set = sentim_analyzer.apply_features(training_docs)
test_set = sentim_analyzer.apply_features(testing_docs)
classifier = sentim_analyzer.train(trainer, training_set)
try:
classifier.show_most_informative_features()
except AttributeError:
print('Your classifier does not provide a show_most_informative_features() method.')
results = sentim_analyzer.evaluate(test_set)
if save_analyzer == True:
save_file(sentim_analyzer, 'sa_subjectivity.pickle')
if output:
extr = [f.__name__ for f in sentim_analyzer.feat_extractors]
output_markdown(output, Dataset='subjectivity', Classifier=type(classifier).__name__,
Tokenizer='WhitespaceTokenizer', Feats=extr,
Instances=n_instances, Results=results)
return sentim_analyzer