本文整理汇总了Python中nibabel.Nifti1Image方法的典型用法代码示例。如果您正苦于以下问题:Python nibabel.Nifti1Image方法的具体用法?Python nibabel.Nifti1Image怎么用?Python nibabel.Nifti1Image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nibabel
的用法示例。
在下文中一共展示了nibabel.Nifti1Image方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: betaseries_file
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def betaseries_file(tmpdir_factory,
deriv_betaseries_fname=deriv_betaseries_fname):
bfile = tmpdir_factory.mktemp("beta").ensure(deriv_betaseries_fname)
np.random.seed(3)
num_trials = 40
tgt_corr = 0.1
bs1 = np.random.rand(num_trials)
# create another betaseries with a target correlation
bs2 = minimize(lambda x: abs(tgt_corr - pearsonr(bs1, x)[0]),
np.random.rand(num_trials)).x
# two identical beta series
bs_data = np.array([[[bs1, bs2]]])
# the nifti image
bs_img = nib.Nifti1Image(bs_data, np.eye(4))
bs_img.to_filename(str(bfile))
return bfile
示例2: generateImgSlicesFolder
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def generateImgSlicesFolder(data_folder = '../Data/MS2017a/scans/'):
scan_folders = glob.glob(data_folder + '*')
for sf in scan_folders:
slice_dir_path = os.path.join(sf, 'slices/')
if not os.path.exists(slice_dir_path):
print('Creating directory at:' , slice_dir_path)
os.makedirs(slice_dir_path)
img = nib.load(os.path.join(sf, 'pre/FLAIR.nii.gz'))
img_np = img.get_data()
img_affine = img.affine
print(sf)
print('The img shape', img_np.shape[2])
for i in range(img_np.shape[2]):
slice_img_np = img_np[:,:,i]
nft_img = nib.Nifti1Image(slice_img_np, img_affine)
nib.save(nft_img, slice_dir_path + 'FLAIR_' + str(i) + '.nii.gz')
if os.path.basename(sf) == '0':
slice_img = nib.load(slice_dir_path + 'FLAIR_' + str(i) + '.nii.gz').get_data() / 5
print('DID I GET HERE?')
print('Writing to', str(i) + '.jpg')
示例3: generateGTSlicesFolder
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def generateGTSlicesFolder(data_folder = '../Data/MS2017a/scans/'):
scan_folders = glob.glob(data_folder + '*')
for sf in scan_folders:
slice_dir_path = os.path.join(sf, 'gt_slices/')
if not os.path.exists(slice_dir_path):
print('Creating directory at:' , slice_dir_path)
os.makedirs(slice_dir_path)
img = nib.load(os.path.join(sf, 'wmh.nii.gz'))
img_np = img.get_data()
img_affine = img.affine
print(sf)
print('The img shape', img_np.shape[2])
for i in range(img_np.shape[2]):
slice_img_np = img_np[:,:,i]
nft_img = nib.Nifti1Image(slice_img_np, img_affine)
nib.save(nft_img, slice_dir_path + 'wmh_' + str(i) + '.nii.gz')
if os.path.basename(sf) == '0':
slice_img = nib.load(slice_dir_path + 'wmh_' + str(i) + '.nii.gz').get_data() * 256
#cv2.imwrite('temp/' + str(i) + '.jpg', slice_img)
示例4: quickSave
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def quickSave(img, wmh, gif, n):
nft_img = nib.Nifti1Image(img.squeeze(), np.eye(4))
nib.save(nft_img, n + '_img.nii.gz')
nft_img = nib.Nifti1Image(wmh.squeeze(), np.eye(4))
nib.save(nft_img, n + '_wmh.nii.gz')
if gif is not None:
nft_img = nib.Nifti1Image(gif.squeeze(), np.eye(4))
nib.save(nft_img, n + '_gif.nii.gz')
#------------------------------------------------------------------------------
#END OF SLICES PREPROCESSING
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
#3D PREPROCESSING
#------------------------------------------------------------------------------
#go through every 3D object from training set and every patch of size NxNxN
#save resulting 3D volumes in one of the two folders based on what the center pixel of the image is
示例5: mosaic_to_nii
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def mosaic_to_nii(dcm_data):
''' Get Nifti file from Siemens
Parameters
----------
dcm_data : ``dicom.DataSet``
DICOM header / image as read by ``dicom`` package
Returns
-------
img : ``Nifti1Image``
Nifti image object
'''
import nibabel as nib
dcm_w = wrapper_from_data(dcm_data)
if not dcm_w.is_mosaic:
raise DicomReadError('data does not appear to be in mosaic format')
data = dcm_w.get_data()
aff = np.dot(DPCS_TO_TAL, dcm_w.get_affine())
return nib.Nifti1Image(data, aff)
示例6: niwrite
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def niwrite(data,affine, name , header=None):
data[np.isnan(data)]=0
stdout.write(" + Writing file: %s ...." % name)
thishead = header
if thishead == None:
thishead = head.copy()
thishead.set_data_shape(list(data.shape))
outni = nib.Nifti1Image(data,affine,header=thishead)
outni.set_data_dtype('float64')
outni.to_filename(name)
print 'done.'
return outni
示例7: test_calc_dAdt_nifti
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def test_calc_dAdt_nifti(self, sphere3_msh):
affine = np.array([[5., 0., 0., -300],
[0., 5., 0., -200],
[0., 0., 5., 0.],
[0., 0., 0., 1]])
field = np.ones((121, 81, 41, 3))
field[..., 1] = 2
field[..., 2] = 3
img = nib.Nifti1Image(field, affine)
coil_matrix = np.array([[0., 1., 0., 0],
[1., 0., 0., 0],
[0., 0., 1., -100.],
[0., 0., 0., 1]])
dadt = coil._calculate_dadt_nifti(sphere3_msh, img, coil_matrix, 1e6, None)
sphere3_msh.nodedata.append(dadt)
assert np.allclose(dadt.value[:, 0], 2e6, atol=1e-6)
assert np.allclose(dadt.value[:, 1], 1e6, atol=1e-6)
assert np.allclose(dadt.value[:, 2], 3e6, atol=1e-6)
示例8: auto_crop_image
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def auto_crop_image(input_name, output_name, reserve):
nim = nib.load(input_name)
image = nim.get_data()
X, Y, Z = image.shape[:3]
# Detect the bounding box of the foreground
idx = np.nonzero(image > 0)
x1, x2 = idx[0].min() - reserve, idx[0].max() + reserve + 1
y1, y2 = idx[1].min() - reserve, idx[1].max() + reserve + 1
z1, z2 = idx[2].min() - reserve, idx[2].max() + reserve + 1
x1, x2 = max(x1, 0), min(x2, X)
y1, y2 = max(y1, 0), min(y2, Y)
z1, z2 = max(z1, 0), min(z2, Z)
print('Bounding box')
print(' bottom-left corner = ({},{},{})'.format(x1, y1, z1))
print(' top-right corner = ({},{},{})'.format(x2, y2, z2))
# Crop the image
image = image[x1:x2, y1:y2, z1:z2]
# Update the affine matrix
affine = nim.affine
affine[:3, 3] = np.dot(affine, np.array([x1, y1, z1, 1]))[:3]
nim2 = nib.Nifti1Image(image, affine)
nib.save(nim2, output_name)
示例9: test_get_clusters_table
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def test_get_clusters_table():
shape = (9, 10, 11)
data = np.zeros(shape)
data[2:4, 5:7, 6:8] = 5.
stat_img = nib.Nifti1Image(data, np.eye(4))
# test one cluster extracted
cluster_table = get_clusters_table(stat_img, 4, 0)
assert len(cluster_table) == 1
# test empty table on high stat threshold
cluster_table = get_clusters_table(stat_img, 6, 0)
assert len(cluster_table) == 0
# test empty table on high cluster threshold
cluster_table = get_clusters_table(stat_img, 4, 9)
assert len(cluster_table) == 0
示例10: test_load_spacingd
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def test_load_spacingd(self, filename):
data = {"image": filename}
data_dict = LoadNiftid(keys="image")(data)
data_dict = AddChanneld(keys="image")(data_dict)
t = time.time()
res_dict = Spacingd(keys="image", pixdim=(1, 0.2, 1), diagonal=True, padding_mode="zeros")(data_dict)
t1 = time.time()
print(f"time monai: {t1 - t}")
anat = nibabel.Nifti1Image(data_dict["image"][0], data_dict["image_meta_dict"]["original_affine"])
ref = resample_to_output(anat, (1, 0.2, 1), order=1)
t2 = time.time()
print(f"time scipy: {t2 - t1}")
self.assertTrue(t2 >= t1)
np.testing.assert_allclose(res_dict["image_meta_dict"]["affine"], ref.affine)
np.testing.assert_allclose(res_dict["image"].shape[1:], ref.shape)
np.testing.assert_allclose(ref.get_fdata(), res_dict["image"][0], atol=0.05)
示例11: test_load_spacingd_rotate
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def test_load_spacingd_rotate(self, filename):
data = {"image": filename}
data_dict = LoadNiftid(keys="image")(data)
data_dict = AddChanneld(keys="image")(data_dict)
affine = data_dict["image_meta_dict"]["affine"]
data_dict["image_meta_dict"]["original_affine"] = data_dict["image_meta_dict"]["affine"] = (
np.array([[0, 0, 1, 0], [0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1]]) @ affine
)
t = time.time()
res_dict = Spacingd(keys="image", pixdim=(1, 2, 3), diagonal=True, padding_mode="zeros")(data_dict)
t1 = time.time()
print(f"time monai: {t1 - t}")
anat = nibabel.Nifti1Image(data_dict["image"][0], data_dict["image_meta_dict"]["original_affine"])
ref = resample_to_output(anat, (1, 2, 3), order=1)
t2 = time.time()
print(f"time scipy: {t2 - t1}")
self.assertTrue(t2 >= t1)
np.testing.assert_allclose(res_dict["image_meta_dict"]["affine"], ref.affine)
if "anatomical" not in filename:
np.testing.assert_allclose(res_dict["image"].shape[1:], ref.shape)
np.testing.assert_allclose(ref.get_fdata(), res_dict["image"][0], atol=0.05)
else:
# different from the ref implementation (shape computed by round
# instead of ceil)
np.testing.assert_allclose(ref.get_fdata()[..., :-1], res_dict["image"][0], atol=0.05)
示例12: test_shape
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def test_shape(self, num_workers, dataset_size):
test_image = nib.Nifti1Image(np.random.randint(0, 2, size=[128, 128, 128]), np.eye(4))
tempdir = tempfile.mkdtemp()
nib.save(test_image, os.path.join(tempdir, "test_image1.nii.gz"))
nib.save(test_image, os.path.join(tempdir, "test_label1.nii.gz"))
nib.save(test_image, os.path.join(tempdir, "test_extra1.nii.gz"))
test_data = [
{
"image": os.path.join(tempdir, "test_image1.nii.gz"),
"label": os.path.join(tempdir, "test_label1.nii.gz"),
"extra": os.path.join(tempdir, "test_extra1.nii.gz"),
}
] * dataset_size
dataset = CacheDataset(
data=test_data,
transform=Compose([LoadNiftid(keys=["image", "label", "extra"])]),
cache_rate=1,
num_workers=num_workers,
)
shutil.rmtree(tempdir)
self.assertEqual(len(dataset._cache), dataset.cache_num)
for i in range(dataset.cache_num):
self.assertIsNotNone(dataset._cache[i])
示例13: test_default_none
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def test_default_none(self, img_transform, expected_shape):
test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))
tempdir = tempfile.mkdtemp()
test_image1 = os.path.join(tempdir, "test_image1.nii.gz")
test_image2 = os.path.join(tempdir, "test_image2.nii.gz")
nib.save(test_image, test_image1)
nib.save(test_image, test_image2)
test_images = [test_image1, test_image2]
dataset = ArrayDataset(test_images, img_transform)
self.assertEqual(len(dataset), 2)
dataset.set_random_state(1234)
data1 = dataset[0]
data2 = dataset[1]
self.assertTupleEqual(data1.shape, expected_shape)
self.assertTupleEqual(data2.shape, expected_shape)
dataset = ArrayDataset(test_images, img_transform)
dataset.set_random_state(1234)
_ = dataset[0]
data2_new = dataset[1]
np.testing.assert_allclose(data2, data2_new, atol=1e-3)
shutil.rmtree(tempdir)
示例14: test_dataloading
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def test_dataloading(self, img_transform, expected_shape):
test_image = nib.Nifti1Image(np.random.randint(0, 2, size=(128, 128, 128)), np.eye(4))
tempdir = tempfile.mkdtemp()
test_image1 = os.path.join(tempdir, "test_image1.nii.gz")
test_image2 = os.path.join(tempdir, "test_image2.nii.gz")
nib.save(test_image, test_image1)
nib.save(test_image, test_image2)
test_images = [test_image1, test_image2]
dataset = ArrayDataset(test_images, img_transform)
self.assertEqual(len(dataset), 2)
dataset.set_random_state(1234)
loader = DataLoader(dataset, batch_size=10, num_workers=1)
imgs = next(iter(loader)) # test batching
np.testing.assert_allclose(imgs.shape, [2] + list(expected_shape))
dataset.set_random_state(1234)
new_imgs = next(iter(loader)) # test batching
np.testing.assert_allclose(imgs, new_imgs, atol=1e-3)
示例15: read_callosum_templates
# 需要导入模块: import nibabel [as 别名]
# 或者: from nibabel import Nifti1Image [as 别名]
def read_callosum_templates(resample_to=False):
"""Load AFQ callosum templates from file
Returns
-------
dict with: keys: names of template ROIs and values: nibabel Nifti1Image
objects from each of the ROI nifti files.
"""
files, folder = fetch_callosum_templates()
template_dict = {}
for f in files:
img = nib.load(op.join(folder, f))
if resample_to:
if isinstance(resample_to, str):
resample_to = nib.load(resample_to)
img = nib.Nifti1Image(reg.resample(img.get_fdata(),
resample_to,
img.affine,
resample_to.affine),
resample_to.affine)
template_dict[f.split('.')[0]] = img
return template_dict