本文整理汇总了Python中networkx.to_directed方法的典型用法代码示例。如果您正苦于以下问题:Python networkx.to_directed方法的具体用法?Python networkx.to_directed怎么用?Python networkx.to_directed使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类networkx
的用法示例。
在下文中一共展示了networkx.to_directed方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setUp
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import to_directed [as 别名]
def setUp(self):
self.G = nx.path_graph(9)
self.DG = nx.path_graph(9, create_using=nx.DiGraph())
self.MG = nx.path_graph(9, create_using=nx.MultiGraph())
self.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph())
self.Gv = nx.to_undirected(self.DG)
self.DGv = nx.to_directed(self.G)
self.MGv = nx.to_undirected(self.MDG)
self.MDGv = nx.to_directed(self.MG)
self.Rv = self.DG.reverse()
self.MRv = self.MDG.reverse()
self.graphs = [self.G, self.DG, self.MG, self.MDG,
self.Gv, self.DGv, self.MGv, self.MDGv,
self.Rv, self.MRv]
for G in self.graphs:
G.edges, G.nodes, G.degree
示例2: setup
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import to_directed [as 别名]
def setup(self):
self.G = nx.path_graph(9)
self.dv = nx.to_directed(self.G)
self.MG = nx.path_graph(9, create_using=nx.MultiGraph())
self.Mdv = nx.to_directed(self.MG)
示例3: test_already_directed
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import to_directed [as 别名]
def test_already_directed(self):
dd = nx.to_directed(self.dv)
Mdd = nx.to_directed(self.Mdv)
assert_edges_equal(dd.edges, self.dv.edges)
assert_edges_equal(Mdd.edges, self.Mdv.edges)
示例4: test_subgraph_todirected
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import to_directed [as 别名]
def test_subgraph_todirected(self):
SG = nx.induced_subgraph(self.G, [4, 5, 6])
SSG = SG.to_directed()
assert_equal(sorted(SSG), [4, 5, 6])
assert_equal(sorted(SSG.edges), [(4, 5), (5, 4), (5, 6), (6, 5)])
示例5: save_graph
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import to_directed [as 别名]
def save_graph(G, output_path, delimiter=',', write_stats=True, write_weights=False, write_dir=True):
r"""
Saves a graph to a file as an edgelist of weighted edgelist. If the stats parameter is set to True the file
will include several lines containing the same basic graph statistics as provided by the get_stats function.
For undirected graphs, the method stores both directions of every edge.
Parameters
----------
G : graph
A NetworkX graph
output_path : file or string
File or filename to write. If a file is provided, it must be
opened in 'wb' mode.
delimiter : string, optional
The string used to separate values. Default is ','.
write_stats : bool, optional
Sets if graph statistics should be added to the edgelist or not. Default is True.
write_weights : bool, optional
If True data will be stored as weighted edgelist (e.g. triplets src, dst, weight) otherwise as normal edgelist.
If the graph edges have no weight attribute and this parameter is set to True,
a weight of 1 will be assigned to each edge. Default is False.
write_dir : bool, optional
This option is only relevant for undirected graphs. If False, the graph will be stored with a single
direction of the edges. If True, both directions of edges will be stored. Default is True.
"""
# Write the graph stats in the file if required
if write_stats:
get_stats(G, output_path)
# Open the file where data should be stored
f = open(output_path, 'a+b')
# Write the graph to a file and use both edge directions if graph is undirected
if G.is_directed():
# Store edgelist
if write_weights:
J = nx.DiGraph()
J.add_weighted_edges_from(G.edges.data('weight', 1))
nx.write_weighted_edgelist(J, f, delimiter=delimiter)
else:
nx.write_edgelist(G, f, delimiter=delimiter, data=False)
else:
if write_dir:
H = nx.to_directed(G)
J = nx.DiGraph()
else:
H = G
J = nx.DiGraph()
# Store edgelist
if write_weights:
J.add_weighted_edges_from(H.edges.data('weight', 1))
nx.write_weighted_edgelist(J, f, delimiter=delimiter)
else:
nx.write_edgelist(H, f, delimiter=delimiter, data=False)
示例6: caveman_graph
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import to_directed [as 别名]
def caveman_graph(l, k):
"""Returns a caveman graph of ``l`` cliques of size ``k``.
Parameters
----------
l : int
Number of cliques
k : int
Size of cliques
Returns
-------
G : NetworkX Graph
caveman graph
Notes
-----
This returns an undirected graph, it can be converted to a directed
graph using :func:`nx.to_directed`, or a multigraph using
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
described in [1]_ and it is unclear which of the directed
generalizations is most useful.
Examples
--------
>>> G = nx.caveman_graph(3, 3)
See also
--------
connected_caveman_graph
References
----------
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
Amer. J. Soc. 105, 493-527, 1999.
"""
# l disjoint cliques of size k
G = nx.empty_graph(l*k)
G.name = "caveman_graph(%s,%s)" % (l*k, k)
if k > 1:
for start in range(0, l*k, k):
edges = itertools.combinations(range(start, start+k), 2)
G.add_edges_from(edges)
return G
示例7: connected_caveman_graph
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import to_directed [as 别名]
def connected_caveman_graph(l, k):
"""Returns a connected caveman graph of ``l`` cliques of size ``k``.
The connected caveman graph is formed by creating ``n`` cliques of size
``k``, then a single edge in each clique is rewired to a node in an
adjacent clique.
Parameters
----------
l : int
number of cliques
k : int
size of cliques
Returns
-------
G : NetworkX Graph
connected caveman graph
Notes
-----
This returns an undirected graph, it can be converted to a directed
graph using :func:`nx.to_directed`, or a multigraph using
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
described in [1]_ and it is unclear which of the directed
generalizations is most useful.
Examples
--------
>>> G = nx.connected_caveman_graph(3, 3)
References
----------
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
Amer. J. Soc. 105, 493-527, 1999.
"""
G = nx.caveman_graph(l, k)
G.name = "connected_caveman_graph(%s,%s)" % (l, k)
for start in range(0, l*k, k):
G.remove_edge(start, start+1)
G.add_edge(start, (start-1) % (l*k))
return G
示例8: caveman_graph
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import to_directed [as 别名]
def caveman_graph(l, k):
"""Returns a caveman graph of `l` cliques of size `k`.
Parameters
----------
l : int
Number of cliques
k : int
Size of cliques
Returns
-------
G : NetworkX Graph
caveman graph
Notes
-----
This returns an undirected graph, it can be converted to a directed
graph using :func:`nx.to_directed`, or a multigraph using
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
described in [1]_ and it is unclear which of the directed
generalizations is most useful.
Examples
--------
>>> G = nx.caveman_graph(3, 3)
See also
--------
connected_caveman_graph
References
----------
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
Amer. J. Soc. 105, 493-527, 1999.
"""
# l disjoint cliques of size k
G = nx.empty_graph(l * k)
if k > 1:
for start in range(0, l * k, k):
edges = itertools.combinations(range(start, start + k), 2)
G.add_edges_from(edges)
return G