当前位置: 首页>>代码示例>>Python>>正文


Python networkx.single_source_shortest_path方法代码示例

本文整理汇总了Python中networkx.single_source_shortest_path方法的典型用法代码示例。如果您正苦于以下问题:Python networkx.single_source_shortest_path方法的具体用法?Python networkx.single_source_shortest_path怎么用?Python networkx.single_source_shortest_path使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在networkx的用法示例。


在下文中一共展示了networkx.single_source_shortest_path方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: collect_concepts_and_relations

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def collect_concepts_and_relations(self):
        g = self.graph
        nodes, depths, is_connected = self.bfs()
        concepts = [self.name2concept[n] for n in nodes] 
        relations = dict()
        for i, src in enumerate(nodes):
            relations[i] = dict()
            paths = nx.single_source_shortest_path(g, src)
            for j, tgt in enumerate(nodes):
                relations[i][j] = list()
                assert tgt in paths
                path = paths[tgt]
                info = dict()
                #info['node'] = path[1:-1]
                info['edge'] = [g[path[i]][path[i+1]]['label'] for i in range(len(path)-1)]
                info['length'] = len(info['edge'])
                relations[i][j].append(info)

        ## TODO, we just use the sequential order
        depths = nodes
        return concepts, depths, relations, is_connected 
开发者ID:jcyk,项目名称:gtos,代码行数:23,代码来源:dependencyGraph.py

示例2: test_single_source_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def test_single_source_shortest_path(self):
        p = nx.shortest_path(self.cycle, 0)
        assert_equal(p[3], [0, 1, 2, 3])
        assert_equal(p, nx.single_source_shortest_path(self.cycle, 0))
        p = nx.shortest_path(self.grid, 1)
        validate_grid_path(4, 4, 1, 12, p[12])
        # now with weights
        p = nx.shortest_path(self.cycle, 0, weight='weight')
        assert_equal(p[3], [0, 1, 2, 3])
        assert_equal(p, nx.single_source_dijkstra_path(self.cycle, 0))
        p = nx.shortest_path(self.grid, 1, weight='weight')
        validate_grid_path(4, 4, 1, 12, p[12])
        # weights and method specified
        p = nx.shortest_path(self.cycle, 0, method='dijkstra', weight='weight')
        assert_equal(p[3], [0, 1, 2, 3])
        assert_equal(p, nx.single_source_shortest_path(self.cycle, 0))
        p = nx.shortest_path(self.cycle, 0, method='bellman-ford',
                             weight='weight')
        assert_equal(p[3], [0, 1, 2, 3])
        assert_equal(p, nx.single_source_shortest_path(self.cycle, 0)) 
开发者ID:holzschu,项目名称:Carnets,代码行数:22,代码来源:test_generic.py

示例3: remove_unused_toplevel_elems

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def remove_unused_toplevel_elems(header: ir.Header, linking_final_header: bool):
    toplevel_elem_names = {elem.name
                           for elem in itertools.chain(header.toplevel_content, header.template_defns)
                           if not isinstance(elem, (ir.StaticAssert, ir.NoOpStmt))}

    public_names = header.public_names
    if not linking_final_header:
        public_names = public_names.union(split_name
                                          for _, split_name in header.split_template_name_by_old_name_and_result_element_name)

    elem_dependency_graph = nx.DiGraph()
    for elem in itertools.chain(header.template_defns, header.toplevel_content):
        if isinstance(elem, (ir.TemplateDefn, ir.ConstantDef, ir.Typedef)):
            elem_name = elem.name
        else:
            # We'll use a dummy name for non-template toplevel elems.
            elem_name = ''

        elem_dependency_graph.add_node(elem_name)

        if elem_name in public_names or (isinstance(elem, (ir.ConstantDef, ir.Typedef)) and any(isinstance(expr, ir.TemplateInstantiation) and expr.instantiation_might_trigger_static_asserts
                                                                                                for expr in elem.transitive_subexpressions)):
            # We also add an edge from the node '' to all toplevel defns that must remain, so that we can use '' as a source below.
            elem_dependency_graph.add_edge('', elem_name)

        for identifier in elem.referenced_identifiers:
            if identifier in toplevel_elem_names:
                elem_dependency_graph.add_edge(elem_name, identifier)

    elem_dependency_graph.add_node('')
    used_elem_names = nx.single_source_shortest_path(elem_dependency_graph, source='').keys()

    return ir.Header(template_defns=tuple(template_defn for template_defn in header.template_defns if
                                          template_defn.name in used_elem_names),
                     toplevel_content=tuple(elem for elem in header.toplevel_content if
                                            isinstance(elem, (ir.StaticAssert, ir.NoOpStmt)) or elem.name in used_elem_names),
                     public_names=header.public_names,
                     split_template_name_by_old_name_and_result_element_name=header.split_template_name_by_old_name_and_result_element_name,
                     check_if_error_specializations=header.check_if_error_specializations) 
开发者ID:google,项目名称:tmppy,代码行数:41,代码来源:_remove_unused_toplevel_elems.py

示例4: test_single_source_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def test_single_source_shortest_path(self):
        p=nx.shortest_path(self.cycle,0)
        assert_equal(p[3],[0,1,2,3])
        assert_equal(p,nx.single_source_shortest_path(self.cycle,0))
        p=nx.shortest_path(self.grid,1)
        validate_grid_path(4, 4, 1, 12, p[12])
        # now with weights
        p=nx.shortest_path(self.cycle,0,weight='weight')
        assert_equal(p[3],[0,1,2,3])
        assert_equal(p,nx.single_source_dijkstra_path(self.cycle,0))
        p=nx.shortest_path(self.grid,1,weight='weight')
        validate_grid_path(4, 4, 1, 12, p[12]) 
开发者ID:SpaceGroupUCL,项目名称:qgisSpaceSyntaxToolkit,代码行数:14,代码来源:test_generic.py

示例5: test_single_source_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def test_single_source_shortest_path(self):
        p=nx.single_source_shortest_path(self.cycle,0)
        assert_equal(p[3],[0,1,2,3])
        p=nx.single_source_shortest_path(self.cycle,0, cutoff=0)
        assert_equal(p,{0 : [0]}) 
开发者ID:SpaceGroupUCL,项目名称:qgisSpaceSyntaxToolkit,代码行数:7,代码来源:test_unweighted.py

示例6: all_pairs_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def all_pairs_shortest_path(G, cutoff=None):
    """Compute shortest paths between all nodes.

    Parameters
    ----------
    G : NetworkX graph

    cutoff : integer, optional
        Depth at which to stop the search. Only paths of length at most
        ``cutoff`` are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary, keyed by source and target, of shortest paths.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> path = nx.all_pairs_shortest_path(G)
    >>> print(path[0][4])
    [0, 1, 2, 3, 4]

    See Also
    --------
    floyd_warshall()

    """
    # TODO This can be trivially parallelized.
    return {n: single_source_shortest_path(G, n, cutoff=cutoff) for n in G} 
开发者ID:SpaceGroupUCL,项目名称:qgisSpaceSyntaxToolkit,代码行数:32,代码来源:unweighted.py

示例7: test_single_source_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def test_single_source_shortest_path(self):
        p = nx.single_source_shortest_path(self.directed_cycle, 3)
        assert_equal(p[0], [3, 4, 5, 6, 0])
        p = nx.single_source_shortest_path(self.cycle, 0)
        assert_equal(p[3], [0, 1, 2, 3])
        p = nx.single_source_shortest_path(self.cycle, 0, cutoff=0)
        assert_equal(p, {0: [0]}) 
开发者ID:holzschu,项目名称:Carnets,代码行数:9,代码来源:test_unweighted.py

示例8: all_pairs_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def all_pairs_shortest_path(G, cutoff=None):
    """Compute shortest paths between all nodes.

    Parameters
    ----------
    G : NetworkX graph

    cutoff : integer, optional
        Depth at which to stop the search. Only paths of length at most
        `cutoff` are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary, keyed by source and target, of shortest paths.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> path = dict(nx.all_pairs_shortest_path(G))
    >>> print(path[0][4])
    [0, 1, 2, 3, 4]

    See Also
    --------
    floyd_warshall()

    """
    # TODO This can be trivially parallelized.
    for n in G:
        yield (n, single_source_shortest_path(G, n, cutoff=cutoff)) 
开发者ID:holzschu,项目名称:Carnets,代码行数:33,代码来源:unweighted.py

示例9: test_single_source_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def test_single_source_shortest_path(self):
        p = nx.single_source_shortest_path(self.directed_cycle, 3)
        assert_equal(p[0], [3, 4, 5, 6, 0])
        p = nx.single_source_shortest_path(self.cycle, 0)
        assert_equal(p[3], [0, 1, 2, 3])
        p = nx.single_source_shortest_path(self.cycle, 0, cutoff=0)
        assert_equal(p,{0 : [0]}) 
开发者ID:aws-samples,项目名称:aws-kube-codesuite,代码行数:9,代码来源:test_unweighted.py

示例10: single_source_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def single_source_shortest_path(G,source,cutoff=None):
    """Compute shortest path between source
    and all other nodes reachable from source.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary, keyed by target, of shortest paths.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> path=nx.single_source_shortest_path(G,0)
    >>> path[4]
    [0, 1, 2, 3, 4]

    Notes
    -----
    The shortest path is not necessarily unique. So there can be multiple
    paths between the source and each target node, all of which have the
    same 'shortest' length. For each target node, this function returns
    only one of those paths.

    See Also
    --------
    shortest_path
    """
    level=0                  # the current level
    nextlevel={source:1}       # list of nodes to check at next level
    paths={source:[source]}  # paths dictionary  (paths to key from source)
    if cutoff==0:
        return paths
    while nextlevel:
        thislevel=nextlevel
        nextlevel={}
        for v in thislevel:
            for w in G[v]:
                if w not in paths:
                    paths[w]=paths[v]+[w]
                    nextlevel[w]=1
        level=level+1
        if (cutoff is not None and cutoff <= level):  break
    return paths 
开发者ID:SpaceGroupUCL,项目名称:qgisSpaceSyntaxToolkit,代码行数:55,代码来源:unweighted.py

示例11: single_source_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def single_source_shortest_path(G, source, cutoff=None):
    """Compute shortest path between source
    and all other nodes reachable from source.

    Parameters
    ----------
    G : NetworkX graph

    source : node label
       Starting node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary, keyed by target, of shortest paths.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> path = nx.single_source_shortest_path(G, 0)
    >>> path[4]
    [0, 1, 2, 3, 4]

    Notes
    -----
    The shortest path is not necessarily unique. So there can be multiple
    paths between the source and each target node, all of which have the
    same 'shortest' length. For each target node, this function returns
    only one of those paths.

    See Also
    --------
    shortest_path
    """
    if source not in G:
        raise nx.NodeNotFound("Source {} not in G".format(source))

    def join(p1, p2):
        return p1 + p2
    if cutoff is None:
        cutoff = float('inf')
    nextlevel = {source: 1}     # list of nodes to check at next level
    paths = {source: [source]}  # paths dictionary  (paths to key from source)
    return dict(_single_shortest_path(G.adj, nextlevel, paths, cutoff, join)) 
开发者ID:holzschu,项目名称:Carnets,代码行数:49,代码来源:unweighted.py

示例12: single_target_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def single_target_shortest_path(G, target, cutoff=None):
    """Compute shortest path to target from all nodes that reach target.

    Parameters
    ----------
    G : NetworkX graph

    target : node label
       Target node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary, keyed by target, of shortest paths.

    Examples
    --------
    >>> G = nx.path_graph(5, create_using=nx.DiGraph())
    >>> path = nx.single_target_shortest_path(G, 4)
    >>> path[0]
    [0, 1, 2, 3, 4]

    Notes
    -----
    The shortest path is not necessarily unique. So there can be multiple
    paths between the source and each target node, all of which have the
    same 'shortest' length. For each target node, this function returns
    only one of those paths.

    See Also
    --------
    shortest_path, single_source_shortest_path
    """
    if target not in G:
        raise nx.NodeNotFound("Target {} not in G".format(target))

    def join(p1, p2):
        return p2 + p1
    # handle undirected graphs
    adj = G.pred if G.is_directed() else G.adj
    if cutoff is None:
        cutoff = float('inf')
    nextlevel = {target: 1}     # list of nodes to check at next level
    paths = {target: [target]}  # paths dictionary  (paths to key from source)
    return dict(_single_shortest_path(adj, nextlevel, paths, cutoff, join)) 
开发者ID:holzschu,项目名称:Carnets,代码行数:50,代码来源:unweighted.py

示例13: single_target_shortest_path

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_shortest_path [as 别名]
def single_target_shortest_path(G, target, cutoff=None):
    """Compute shortest path to target from all nodes that reach target.

    Parameters
    ----------
    G : NetworkX graph

    target : node label
       Target node for path

    cutoff : integer, optional
        Depth to stop the search. Only paths of length <= cutoff are returned.

    Returns
    -------
    lengths : dictionary
        Dictionary, keyed by target, of shortest paths.

    Examples
    --------
    >>> G = nx.path_graph(5, create_using=nx.DiGraph())
    >>> path = nx.single_target_shortest_path(G, 4)
    >>> path[0]
    [0, 1, 2, 3, 4]

    Notes
    -----
    The shortest path is not necessarily unique. So there can be multiple
    paths between the source and each target node, all of which have the
    same 'shortest' length. For each target node, this function returns
    only one of those paths.

    See Also
    --------
    shortest_path, single_source_shortest_path
    """
    if target not in G:
        raise nx.NodeNotFound("Target {} not in G".format(source))

    def join(p1, p2):
        return p2 + p1
    # handle undirected graphs
    adj = G.pred if G.is_directed() else G.adj
    if cutoff is None:
        cutoff = float('inf')
    nextlevel = {target: 1}     # list of nodes to check at next level
    paths = {target: [target]}  # paths dictionary  (paths to key from source)
    return dict(_single_shortest_path(adj, nextlevel, paths, cutoff, join)) 
开发者ID:aws-samples,项目名称:aws-kube-codesuite,代码行数:50,代码来源:unweighted.py


注:本文中的networkx.single_source_shortest_path方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。