本文整理汇总了Python中networkx.single_source_dijkstra方法的典型用法代码示例。如果您正苦于以下问题:Python networkx.single_source_dijkstra方法的具体用法?Python networkx.single_source_dijkstra怎么用?Python networkx.single_source_dijkstra使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类networkx
的用法示例。
在下文中一共展示了networkx.single_source_dijkstra方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_path_two
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def get_path_two(start,end):
v1 = start.split('-')
v2 = end.split('-')
if v1[1] == 'B':
or1 = 'REV'
else:
or1 = 'FOW'
if v2[1] == 'B':
or2 = 'FOW'
else:
or2 = 'REV'
start = v1[0]+'$'+or1
end = v2[0] + '$'+or2
paths = nx.single_source_dijkstra(OVl_G,source=start,target=end)
paths = paths[1]
path = []
if end in paths:
path = paths[end]
else:
return "NO PATH FOUND"
ret = []
for node in path:
n = node.split('$')
if n[1] == 'REV':
ret.append(n[0]+'-E')
ret.append(n[0]+'-B')
else:
ret.append(n[0]+'-B')
ret.append(n[0]+'-E')
return ret
示例2: test_negative_edge_cycle
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def test_negative_edge_cycle(self):
G = nx.cycle_graph(5, create_using=nx.DiGraph())
assert_equal(nx.negative_edge_cycle(G), False)
G.add_edge(8, 9, weight=-7)
G.add_edge(9, 8, weight=3)
graph_size = len(G)
assert_equal(nx.negative_edge_cycle(G), True)
assert_equal(graph_size, len(G))
assert_raises(ValueError, nx.single_source_dijkstra_path_length, G, 8)
assert_raises(ValueError, nx.single_source_dijkstra, G, 8)
assert_raises(ValueError, nx.dijkstra_predecessor_and_distance, G, 8)
G.add_edge(9, 10)
assert_raises(ValueError, nx.bidirectional_dijkstra, G, 8, 10)
示例3: test_absent_source
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def test_absent_source(self):
# the check is in _dijkstra_multisource, but this will provide
# regression testing against later changes to any of the "client"
# Dijkstra or Bellman-Ford functions
G = nx.path_graph(2)
for fn in (nx.dijkstra_path,
nx.dijkstra_path_length,
nx.single_source_dijkstra_path,
nx.single_source_dijkstra_path_length,
nx.single_source_dijkstra,
nx.dijkstra_predecessor_and_distance,):
assert_raises(nx.NodeNotFound, fn, G, 3, 0)
示例4: dijkstra_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def dijkstra_path(G, source, target, weight='weight'):
"""Returns the shortest path from source to target in a weighted graph G.
Parameters
----------
G : NetworkX graph
source : node
Starting node
target : node
Ending node
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
path : list
List of nodes in a shortest path.
Raises
------
NetworkXNoPath
If no path exists between source and target.
Examples
--------
>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path(G,0,4))
[0, 1, 2, 3, 4]
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
bidirectional_dijkstra()
"""
(length, path) = single_source_dijkstra(G, source, target=target,
weight=weight)
try:
return path[target]
except KeyError:
raise nx.NetworkXNoPath(
"node %s not reachable from %s" % (source, target))
示例5: single_source_dijkstra_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def single_source_dijkstra_path(G, source, cutoff=None, weight='weight'):
"""Compute shortest path between source and all other reachable
nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path.
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
paths : dictionary
Dictionary of shortest path lengths keyed by target.
Examples
--------
>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra()
"""
(length, path) = single_source_dijkstra(
G, source, cutoff=cutoff, weight=weight)
return path
示例6: single_source_dijkstra_path_length
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def single_source_dijkstra_path_length(G, source, cutoff=None,
weight='weight'):
"""Compute the shortest path length between source and all other
reachable nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight.
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
length : dictionary
Dictionary of shortest lengths keyed by target.
Examples
--------
>>> G=nx.path_graph(5)
>>> length=nx.single_source_dijkstra_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra()
"""
if G.is_multigraph():
get_weight = lambda u, v, data: min(
eattr.get(weight, 1) for eattr in data.values())
else:
get_weight = lambda u, v, data: data.get(weight, 1)
return _dijkstra(G, source, get_weight, cutoff=cutoff)
示例7: test_dijkstra
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def test_dijkstra(self):
(D, P) = nx.single_source_dijkstra(self.XG, 's')
validate_path(self.XG, 's', 'v', 9, P['v'])
assert_equal(D['v'], 9)
validate_path(
self.XG, 's', 'v', 9, nx.single_source_dijkstra_path(self.XG, 's')['v'])
assert_equal(
nx.single_source_dijkstra_path_length(self.XG, 's')['v'], 9)
validate_path(
self.XG, 's', 'v', 9, nx.single_source_dijkstra(self.XG, 's')[1]['v'])
validate_path(
self.MXG, 's', 'v', 9, nx.single_source_dijkstra_path(self.MXG, 's')['v'])
GG = self.XG.to_undirected()
# make sure we get lower weight
# to_undirected might choose either edge with weight 2 or weight 3
GG['u']['x']['weight'] = 2
(D, P) = nx.single_source_dijkstra(GG, 's')
validate_path(GG, 's', 'v', 8, P['v'])
assert_equal(D['v'], 8) # uses lower weight of 2 on u<->x edge
validate_path(GG, 's', 'v', 8, nx.dijkstra_path(GG, 's', 'v'))
assert_equal(nx.dijkstra_path_length(GG, 's', 'v'), 8)
validate_path(self.XG2, 1, 3, 4, nx.dijkstra_path(self.XG2, 1, 3))
validate_path(self.XG3, 0, 3, 15, nx.dijkstra_path(self.XG3, 0, 3))
assert_equal(nx.dijkstra_path_length(self.XG3, 0, 3), 15)
validate_path(self.XG4, 0, 2, 4, nx.dijkstra_path(self.XG4, 0, 2))
assert_equal(nx.dijkstra_path_length(self.XG4, 0, 2), 4)
validate_path(self.MXG4, 0, 2, 4, nx.dijkstra_path(self.MXG4, 0, 2))
validate_path(
self.G, 's', 'v', 2, nx.single_source_dijkstra(self.G, 's', 'v')[1]['v'])
validate_path(
self.G, 's', 'v', 2, nx.single_source_dijkstra(self.G, 's')[1]['v'])
validate_path(self.G, 's', 'v', 2, nx.dijkstra_path(self.G, 's', 'v'))
assert_equal(nx.dijkstra_path_length(self.G, 's', 'v'), 2)
# NetworkXError: node s not reachable from moon
assert_raises(nx.NetworkXNoPath, nx.dijkstra_path, self.G, 's', 'moon')
assert_raises(
nx.NetworkXNoPath, nx.dijkstra_path_length, self.G, 's', 'moon')
validate_path(self.cycle, 0, 3, 3, nx.dijkstra_path(self.cycle, 0, 3))
validate_path(self.cycle, 0, 4, 3, nx.dijkstra_path(self.cycle, 0, 4))
assert_equal(
nx.single_source_dijkstra(self.cycle, 0, 0), ({0: 0}, {0: [0]}))
示例8: single_source_bellman_ford_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def single_source_bellman_ford_path(G, source, weight='weight'):
"""Compute shortest path between source and all other reachable
nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path.
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
paths : dictionary
Dictionary of shortest path lengths keyed by target.
Raises
------
NodeNotFound
If `source` is not in `G`.
Examples
--------
>>> G=nx.path_graph(5)
>>> path=nx.single_source_bellman_ford_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra(), single_source_bellman_ford()
"""
(length, path) = single_source_bellman_ford(
G, source, weight=weight)
return path
示例9: single_source_bellman_ford_path_length
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def single_source_bellman_ford_path_length(G, source, weight='weight'):
"""Compute the shortest path length between source and all other
reachable nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight.
Returns
-------
length : iterator
(target, shortest path length) iterator
Raises
------
NodeNotFound
If `source` is not in `G`.
Examples
--------
>>> G = nx.path_graph(5)
>>> length = dict(nx.single_source_bellman_ford_path_length(G, 0))
>>> length[4]
4
>>> for node in [0, 1, 2, 3, 4]:
... print('{}: {}'.format(node, length[node]))
0: 0
1: 1
2: 2
3: 3
4: 4
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra(), single_source_bellman_ford()
"""
weight = _weight_function(G, weight)
return _bellman_ford(G, [source], weight)
示例10: test_dijkstra
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def test_dijkstra(self):
(D, P) = nx.single_source_dijkstra(self.XG, 's')
validate_path(self.XG, 's', 'v', 9, P['v'])
assert_equal(D['v'], 9)
validate_path(
self.XG, 's', 'v', 9, nx.single_source_dijkstra_path(self.XG, 's')['v'])
assert_equal(dict(
nx.single_source_dijkstra_path_length(self.XG, 's'))['v'], 9)
validate_path(
self.XG, 's', 'v', 9, nx.single_source_dijkstra(self.XG, 's')[1]['v'])
validate_path(
self.MXG, 's', 'v', 9, nx.single_source_dijkstra_path(self.MXG, 's')['v'])
GG = self.XG.to_undirected()
# make sure we get lower weight
# to_undirected might choose either edge with weight 2 or weight 3
GG['u']['x']['weight'] = 2
(D, P) = nx.single_source_dijkstra(GG, 's')
validate_path(GG, 's', 'v', 8, P['v'])
assert_equal(D['v'], 8) # uses lower weight of 2 on u<->x edge
validate_path(GG, 's', 'v', 8, nx.dijkstra_path(GG, 's', 'v'))
assert_equal(nx.dijkstra_path_length(GG, 's', 'v'), 8)
validate_path(self.XG2, 1, 3, 4, nx.dijkstra_path(self.XG2, 1, 3))
validate_path(self.XG3, 0, 3, 15, nx.dijkstra_path(self.XG3, 0, 3))
assert_equal(nx.dijkstra_path_length(self.XG3, 0, 3), 15)
validate_path(self.XG4, 0, 2, 4, nx.dijkstra_path(self.XG4, 0, 2))
assert_equal(nx.dijkstra_path_length(self.XG4, 0, 2), 4)
validate_path(self.MXG4, 0, 2, 4, nx.dijkstra_path(self.MXG4, 0, 2))
validate_path(
self.G, 's', 'v', 2, nx.single_source_dijkstra(self.G, 's', 'v')[1])
validate_path(
self.G, 's', 'v', 2, nx.single_source_dijkstra(self.G, 's')[1]['v'])
validate_path(self.G, 's', 'v', 2, nx.dijkstra_path(self.G, 's', 'v'))
assert_equal(nx.dijkstra_path_length(self.G, 's', 'v'), 2)
# NetworkXError: node s not reachable from moon
assert_raises(nx.NetworkXNoPath, nx.dijkstra_path, self.G, 's', 'moon')
assert_raises(
nx.NetworkXNoPath, nx.dijkstra_path_length, self.G, 's', 'moon')
validate_path(self.cycle, 0, 3, 3, nx.dijkstra_path(self.cycle, 0, 3))
validate_path(self.cycle, 0, 4, 3, nx.dijkstra_path(self.cycle, 0, 4))
assert_equal(nx.single_source_dijkstra(self.cycle, 0, 0), (0, [0]))
示例11: ego_graph
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def ego_graph(G, n, radius=1, center=True, undirected=False, distance=None):
"""Returns induced subgraph of neighbors centered at node n within
a given radius.
Parameters
----------
G : graph
A NetworkX Graph or DiGraph
n : node
A single node
radius : number, optional
Include all neighbors of distance<=radius from n.
center : bool, optional
If False, do not include center node in graph
undirected : bool, optional
If True use both in- and out-neighbors of directed graphs.
distance : key, optional
Use specified edge data key as distance. For example, setting
distance='weight' will use the edge weight to measure the
distance from the node n.
Notes
-----
For directed graphs D this produces the "out" neighborhood
or successors. If you want the neighborhood of predecessors
first reverse the graph with D.reverse(). If you want both
directions use the keyword argument undirected=True.
Node, edge, and graph attributes are copied to the returned subgraph.
"""
if undirected:
if distance is not None:
sp, _ = nx.single_source_dijkstra(G.to_undirected(),
n, cutoff=radius,
weight=distance)
else:
sp = dict(nx.single_source_shortest_path_length(G.to_undirected(),
n, cutoff=radius))
else:
if distance is not None:
sp, _ = nx.single_source_dijkstra(G,
n, cutoff=radius,
weight=distance)
else:
sp = dict(nx.single_source_shortest_path_length(G, n, cutoff=radius))
H = G.subgraph(sp).copy()
if not center:
H.remove_node(n)
return H
示例12: single_source_dijkstra_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def single_source_dijkstra_path(G, source, cutoff=None, weight='weight'):
"""Find shortest weighted paths in G from a source node.
Compute shortest path between source and all other reachable
nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path.
cutoff : integer or float, optional
Depth to stop the search. Only return paths with length <= cutoff.
weight : string or function
If this is a string, then edge weights will be accessed via the
edge attribute with this key (that is, the weight of the edge
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
such edge attribute exists, the weight of the edge is assumed to
be one.
If this is a function, the weight of an edge is the value
returned by the function. The function must accept exactly three
positional arguments: the two endpoints of an edge and the
dictionary of edge attributes for that edge. The function must
return a number.
Returns
-------
paths : dictionary
Dictionary of shortest path lengths keyed by target.
Examples
--------
>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
The weight function can be used to hide edges by returning None.
So ``weight = lambda u, v, d: 1 if d['color']=="red" else None``
will find the shortest red path.
See Also
--------
single_source_dijkstra(), single_source_bellman_ford()
"""
return multi_source_dijkstra_path(G, {source}, cutoff=cutoff,
weight=weight)
示例13: single_source_bellman_ford_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def single_source_bellman_ford_path(G, source, cutoff=None, weight='weight'):
"""Compute shortest path between source and all other reachable
nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path.
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
paths : dictionary
Dictionary of shortest path lengths keyed by target.
Examples
--------
>>> G=nx.path_graph(5)
>>> path=nx.single_source_bellman_ford_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra(), single_source_bellman_ford()
"""
(length, path) = single_source_bellman_ford(
G, source, cutoff=cutoff, weight=weight)
return path
示例14: single_source_bellman_ford_path_length
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import single_source_dijkstra [as 别名]
def single_source_bellman_ford_path_length(G, source,
cutoff=None, weight='weight'):
"""Compute the shortest path length between source and all other
reachable nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight.
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
length : iterator
(target, shortest path length) iterator
Examples
--------
>>> G = nx.path_graph(5)
>>> length = dict(nx.single_source_bellman_ford_path_length(G, 0))
>>> length[4]
4
>>> for node in [0, 1, 2, 3, 4]:
... print('{}: {}'.format(node, length[node]))
0: 0
1: 1
2: 2
3: 3
4: 4
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra(), single_source_bellman_ford()
"""
weight = _weight_function(G, weight)
return _bellman_ford(G, [source], weight, cutoff=cutoff)