当前位置: 首页>>代码示例>>Python>>正文


Python networkx.relabel_nodes方法代码示例

本文整理汇总了Python中networkx.relabel_nodes方法的典型用法代码示例。如果您正苦于以下问题:Python networkx.relabel_nodes方法的具体用法?Python networkx.relabel_nodes怎么用?Python networkx.relabel_nodes使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在networkx的用法示例。


在下文中一共展示了networkx.relabel_nodes方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __subgraph__

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def __subgraph__(self, node_idx, x, edge_index, **kwargs):
        num_nodes, num_edges = x.size(0), edge_index.size(1)

        subset, edge_index, mapping, edge_mask = k_hop_subgraph(
            node_idx, self.__num_hops__(), edge_index, relabel_nodes=True,
            num_nodes=num_nodes, flow=self.__flow__())

        x = x[subset]
        for key, item in kwargs:
            if torch.is_tensor(item) and item.size(0) == num_nodes:
                item = item[subset]
            elif torch.is_tensor(item) and item.size(0) == num_edges:
                item = item[edge_mask]
            kwargs[key] = item

        return x, edge_index, mapping, edge_mask, kwargs 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:18,代码来源:gnn_explainer.py

示例2: ba

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def ba(start, width, role_start=0, m=5):
    """Builds a BA preferential attachment graph, with index of nodes starting at start
    and role_ids at role_start
    INPUT:
    -------------
    start       :    starting index for the shape
    width       :    int size of the graph
    role_start  :    starting index for the roles
    OUTPUT:
    -------------
    graph       :    a house shape graph, with ids beginning at start
    roles       :    list of the roles of the nodes (indexed starting at
                     role_start)
    """
    graph = nx.barabasi_albert_graph(width, m)
    graph.add_nodes_from(range(start, start + width))
    nids = sorted(graph)
    mapping = {nid: start + i for i, nid in enumerate(nids)}
    graph = nx.relabel_nodes(graph, mapping)
    roles = [role_start for i in range(width)]
    return graph, roles 
开发者ID:RexYing,项目名称:gnn-model-explainer,代码行数:23,代码来源:synthetic_structsim.py

示例3: test_initialization_reproducible_between_runs

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def test_initialization_reproducible_between_runs():
    seed = 45
    logical_graph = nx.erdos_renyi_graph(6, 0.5, seed=seed)
    logical_graph = nx.relabel_nodes(logical_graph, cirq.LineQubit)
    device_graph = ccr.get_grid_device_graph(2, 3)
    initial_mapping = ccr.initialization.get_initial_mapping(
        logical_graph, device_graph, seed)
    expected_mapping = {
        cirq.GridQubit(0, 0): cirq.LineQubit(5),
        cirq.GridQubit(0, 1): cirq.LineQubit(0),
        cirq.GridQubit(0, 2): cirq.LineQubit(2),
        cirq.GridQubit(1, 0): cirq.LineQubit(3),
        cirq.GridQubit(1, 1): cirq.LineQubit(4),
        cirq.GridQubit(1, 2): cirq.LineQubit(1),
    }
    assert initial_mapping == expected_mapping 
开发者ID:quantumlib,项目名称:Cirq,代码行数:18,代码来源:initialization_test.py

示例4: gate_model

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def gate_model(gate_type, fault=True):
    labels, configurations = GATES[gate_type]
    if fault:
        configurations = fault_gate(configurations, FAULT_GAP)
    num_variables = len(next(iter(configurations)))
    for size in range(num_variables, num_variables+4):  # reasonable margin
        G = nx.complete_graph(size)
        nx.relabel_nodes(G, dict(enumerate(labels)), copy=False)
        spec = pm.Specification(G, labels, configurations, dimod.SPIN)
        try:
            pmodel = pm.get_penalty_model(spec)
            if pmodel is not None:
                return pmodel
        except pm.ImpossiblePenaltyModel:
            pass

    raise ValueError("unable to get the penalty model from factories") 
开发者ID:dwave-examples,项目名称:circuit-fault-diagnosis,代码行数:19,代码来源:gates.py

示例5: visualize_dag

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def visualize_dag(dg=None, plot_nx=False, plot_graphviz=True, write_dot=True,
                  prog='dot'):
    """For interactive use"""
    import webbrowser
    if not dg:
        dg = build_dag()
    dg = nx.relabel_nodes(
        dg,
        {x: "%s\n%s" % (x, node.get_job_id_template(x)[0]) for x in dg.node})
    if plot_nx:
        nx.draw_graphviz(dg, prog=prog)
    if write_dot or plot_graphviz:
        tmpf = tempfile.mkstemp(suffix='.dot', prefix='stolos_dag_')[1]
        nx.write_dot(dg, tmpf)
        os.popen('{1} {0} -Tpng > {0}.png'.format(tmpf, prog))
        print("saved to %s.png" % tmpf)
        if plot_graphviz:
            webbrowser.open(tmpf + '.png') 
开发者ID:sailthru,项目名称:stolos,代码行数:20,代码来源:build.py

示例6: test_relabel_typical

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def test_relabel_typical(self):
        graph = nx.circular_ladder_graph(12)
        decision_variables = (0, 2, 5)
        feasible_configurations = {(1, 1, 1): 0.}
        spec = pm.Specification(graph, decision_variables, feasible_configurations, vartype=dimod.SPIN)

        mapping = dict(enumerate('abcdefghijklmnopqrstuvwxyz'))

        new_spec = spec.relabel_variables(mapping, inplace=False)

        # create a test spec
        graph = nx.relabel_nodes(graph, mapping)
        decision_variables = (mapping[v] for v in decision_variables)
        test_spec = pm.Specification(graph, decision_variables, feasible_configurations, vartype=dimod.SPIN)

        self.assertEqual(new_spec, test_spec)
        self.assertEqual(new_spec.ising_linear_ranges, test_spec.ising_linear_ranges)
        self.assertEqual(new_spec.ising_quadratic_ranges, test_spec.ising_quadratic_ranges) 
开发者ID:dwavesystems,项目名称:penaltymodel,代码行数:20,代码来源:test_specification.py

示例7: test_relabel_copy

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def test_relabel_copy(self):
        graph = nx.circular_ladder_graph(12)
        decision_variables = (0, 2, 5)
        feasible_configurations = {(1, 1, 1): 0.}
        spec = pm.Specification(graph, decision_variables, feasible_configurations, vartype=dimod.SPIN)

        mapping = dict(enumerate('abcdefghijklmnopqrstuvwxyz'))

        new_spec = spec.relabel_variables(mapping, inplace=False)

        # create a test spec
        graph = nx.relabel_nodes(graph, mapping)
        decision_variables = (mapping[v] for v in decision_variables)
        test_spec = pm.Specification(graph, decision_variables, feasible_configurations, vartype=dimod.SPIN)

        self.assertEqual(new_spec, test_spec)
        self.assertEqual(new_spec.ising_linear_ranges, test_spec.ising_linear_ranges)
        self.assertEqual(new_spec.ising_quadratic_ranges, test_spec.ising_quadratic_ranges) 
开发者ID:dwavesystems,项目名称:penaltymodel,代码行数:20,代码来源:test_specification.py

示例8: test_relabel_inplace

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def test_relabel_inplace(self):
        graph = nx.circular_ladder_graph(12)
        decision_variables = (0, 2, 5)
        feasible_configurations = {(1, 1, 1): 0.}
        spec = pm.Specification(graph, decision_variables, feasible_configurations, vartype=dimod.SPIN)

        mapping = {i: v for i, v in enumerate('abcdefghijklmnopqrstuvwxyz') if i in graph}

        new_spec = spec.relabel_variables(mapping, inplace=True)

        self.assertIs(new_spec, spec)  # should be the same object
        self.assertIs(new_spec.graph, spec.graph)

        # create a test spec
        graph = nx.relabel_nodes(graph, mapping)
        decision_variables = (mapping[v] for v in decision_variables)
        test_spec = pm.Specification(graph, decision_variables, feasible_configurations, vartype=dimod.SPIN)

        self.assertEqual(new_spec, test_spec)
        self.assertEqual(new_spec.ising_linear_ranges, test_spec.ising_linear_ranges)
        self.assertEqual(new_spec.ising_quadratic_ranges, test_spec.ising_quadratic_ranges) 
开发者ID:dwavesystems,项目名称:penaltymodel,代码行数:23,代码来源:test_specification.py

示例9: test_and_on_k44

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def test_and_on_k44(self):
        graph = nx.Graph()
        for i in range(3):
            for j in range(3, 6):
                graph.add_edge(i, j)

        decision_variables = (0, 2, 3)
        feasible_configurations = AND(2)

        mapping = {0: '0', 1: '1', 2: '2', 3: '3'}
        graph = nx.relabel_nodes(graph, mapping)
        decision_variables = tuple(mapping[x] for x in decision_variables)

        spin_configurations = tuple([tuple([2 * i - 1 for i in b]) for b in feasible_configurations])
        spec = pm.Specification(graph, decision_variables, spin_configurations, vartype=dimod.SPIN)

        pm0 = mip.get_penalty_model(spec)

        self.check_generated_ising_model(pm0.feasible_configurations, pm0.decision_variables,
                                         pm0.model.linear, pm0.model.quadratic, pm0.ground_energy - pm0.model.offset,
                                         pm0.classical_gap) 
开发者ID:dwavesystems,项目名称:penaltymodel,代码行数:23,代码来源:test_interface.py

示例10: orient_undirected_graph

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def orient_undirected_graph(self, data, graph, **kwargs):
        """Run PC on an undirected graph.

        Args:
            data (pandas.DataFrame): DataFrame containing the data
            graph (networkx.Graph): Skeleton of the graph to orient

        Returns:
            networkx.DiGraph: Solution given by PC on the given skeleton.
        """
        # Building setup w/ arguments.
        self.arguments['{CITEST}'] = self.dir_CI_test[self.CI_test]
        self.arguments['{METHOD_INDEP}'] = self.dir_method_indep[self.CI_test]
        self.arguments['{DIRECTED}'] = 'TRUE'
        self.arguments['{ALPHA}'] = str(self.alpha)
        self.arguments['{NJOBS}'] = str(self.njobs)
        self.arguments['{VERBOSE}'] = str(self.verbose).upper()

        fe = DataFrame(nx.adj_matrix(graph, weight=None).todense())
        fg = DataFrame(1 - fe.values)

        results = self._run_pc(data, fixedEdges=fe, fixedGaps=fg, verbose=self.verbose)

        return nx.relabel_nodes(nx.DiGraph(results),
                                {idx: i for idx, i in enumerate(data.columns)}) 
开发者ID:FenTechSolutions,项目名称:CausalDiscoveryToolbox,代码行数:27,代码来源:PC.py

示例11: create_graph_from_data

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def create_graph_from_data(self, data, **kwargs):
        """Run the PC algorithm.

        Args:
            data (pandas.DataFrame): DataFrame containing the data

        Returns:
            networkx.DiGraph: Solution given by PC on the given data.
       """
        # Building setup w/ arguments.
        self.arguments['{CITEST}'] = self.dir_CI_test[self.CI_test]
        self.arguments['{METHOD_INDEP}'] = self.dir_method_indep[self.CI_test]
        self.arguments['{DIRECTED}'] = 'TRUE'
        self.arguments['{ALPHA}'] = str(self.alpha)
        self.arguments['{NJOBS}'] = str(self.njobs)
        self.arguments['{VERBOSE}'] = str(self.verbose).upper()

        results = self._run_pc(data, verbose=self.verbose)

        return nx.relabel_nodes(nx.DiGraph(results),
                                {idx: i for idx, i in enumerate(data.columns)}) 
开发者ID:FenTechSolutions,项目名称:CausalDiscoveryToolbox,代码行数:23,代码来源:PC.py

示例12: create_graph_from_data

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def create_graph_from_data(self, data):
        """Run the LiNGAM algorithm.

        Args:
            data (pandas.DataFrame): DataFrame containing the data

        Returns:
            networkx.DiGraph: Prediction given by the LiNGAM algorithm.

        """
        # Building setup w/ arguments.
        self.arguments['{VERBOSE}'] = str(self.verbose).upper()
        results = self._run_LiNGAM(data, verbose=self.verbose)

        return nx.relabel_nodes(nx.DiGraph(results),
                                {idx: i for idx, i in enumerate(data.columns)}) 
开发者ID:FenTechSolutions,项目名称:CausalDiscoveryToolbox,代码行数:18,代码来源:LiNGAM.py

示例13: create_graph_from_data

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def create_graph_from_data(self, data):
        """Run the GES algorithm.

        Args:
            data (pandas.DataFrame): DataFrame containing the data

        Returns:
            networkx.DiGraph: Solution given by the GES algorithm.

        """
        # Building setup w/ arguments.
        self.arguments['{SCORE}'] = self.scores[self.score]
        self.arguments['{VERBOSE}'] = str(self.verbose).upper()

        results = self._run_ges(data, verbose=self.verbose)

        return nx.relabel_nodes(nx.DiGraph(results),
                                {idx: i for idx, i in enumerate(data.columns)}) 
开发者ID:FenTechSolutions,项目名称:CausalDiscoveryToolbox,代码行数:20,代码来源:GES.py

示例14: create_graph_from_data

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def create_graph_from_data(self, data, **kwargs):
        """Apply causal discovery on observational data using CAM.

        Args:
            data (pandas.DataFrame): DataFrame containing the data

        Returns:
            networkx.DiGraph: Solution given by the CAM algorithm.
        """
        # Building setup w/ arguments.
        self.arguments['{SCORE}'] = self.scores[self.score]
        self.arguments['{CUTOFF}'] = str(self.cutoff)
        self.arguments['{VARSEL}'] = str(self.variablesel).upper()
        self.arguments['{SELMETHOD}'] = self.var_selection[self.selmethod]
        self.arguments['{PRUNING}'] = str(self.pruning).upper()
        self.arguments['{PRUNMETHOD}'] = self.var_selection[self.prunmethod]
        self.arguments['{NJOBS}'] = str(self.njobs)
        self.arguments['{VERBOSE}'] = str(self.verbose).upper()
        results = self._run_cam(data, verbose=self.verbose)

        return nx.relabel_nodes(nx.DiGraph(results),
                                {idx: i for idx, i in enumerate(data.columns)}) 
开发者ID:FenTechSolutions,项目名称:CausalDiscoveryToolbox,代码行数:24,代码来源:CAM.py

示例15: orient_undirected_graph

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import relabel_nodes [as 别名]
def orient_undirected_graph(self, data, graph):
        """Run GIES on an undirected graph.

        Args:
            data (pandas.DataFrame): DataFrame containing the data
            graph (networkx.Graph): Skeleton of the graph to orient

        Returns:
            networkx.DiGraph: Solution given by the GIES algorithm.

        """
        # Building setup w/ arguments.
        self.arguments['{VERBOSE}'] = str(self.verbose).upper()
        self.arguments['{SCORE}'] = self.scores[self.score]

        fe = DataFrame(nx.adj_matrix(graph, weight=None).todense())
        fg = DataFrame(1 - fe.values)

        results = self._run_gies(data, fixedGaps=fg, verbose=self.verbose)

        return nx.relabel_nodes(nx.DiGraph(results),
                                {idx: i for idx, i in enumerate(data.columns)}) 
开发者ID:FenTechSolutions,项目名称:CausalDiscoveryToolbox,代码行数:24,代码来源:GIES.py


注:本文中的networkx.relabel_nodes方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。