本文整理汇总了Python中networkx.readwrite.json_graph.node_link_graph方法的典型用法代码示例。如果您正苦于以下问题:Python json_graph.node_link_graph方法的具体用法?Python json_graph.node_link_graph怎么用?Python json_graph.node_link_graph使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类networkx.readwrite.json_graph
的用法示例。
在下文中一共展示了json_graph.node_link_graph方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_feature_smoothness
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def compute_feature_smoothness(path, times=0):
G_org = json_graph.node_link_graph(json.load(open(path+'-G.json')))
# G_org = remove_unlabeled(G_org)
if nx.is_directed(G_org):
G_org = G_org.to_undirected()
edge_num = G_org.number_of_edges()
G = pygsp.graphs.Graph(nx.adjacency_matrix(G_org))
feats = np.load(path+'-feats.npy')
# smooth
for i in range(times):
feats = feature_broadcast(feats, G_org)
np.save(path+'-feats_'+str(times)+'.npy', feats)
min_max_scaler = preprocessing.MinMaxScaler()
feats = min_max_scaler.fit_transform(feats)
smoothness = np.zeros(feats.shape[1])
for src, dst in G_org.edges():
smoothness += (feats[src]-feats[dst])*(feats[src]-feats[dst])
smoothness = np.linalg.norm(smoothness,ord=1)
print('The smoothness is: ', 2*smoothness/edge_num/feats.shape[1])
示例2: compute_label_smoothness
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def compute_label_smoothness(path, rate=0.):
G_org = json_graph.node_link_graph(json.load(open(path+'-G.json')))
# G_org = remove_unlabeled(G_org)
if nx.is_directed(G_org):
G_org = G_org.to_undirected()
class_map = json.load(open(path+'-class_map.json'))
for k, v in class_map.items():
if type(v) != list:
class_map = convert_list(class_map)
break
labels = convert_ndarray(class_map)
labels = np.squeeze(label_to_vector(labels))
# smooth
G_org = label_broadcast(G_org, labels, rate)
with open(path+'-G_'+str(rate)+'.json', 'w') as f:
f.write(json.dumps(json_graph.node_link_data(G_org)))
edge_num = G_org.number_of_edges()
G = pygsp.graphs.Graph(nx.adjacency_matrix(G_org))
smoothness = 0
for src, dst in G_org.edges():
if labels[src] != labels[dst]:
smoothness += 1
print('The smoothness is: ', 2*smoothness/edge_num)
示例3: as_tree
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def as_tree(graph, root=OPENSTACK_CLUSTER, reverse=False):
if nx.__version__ >= '2.0':
linked_graph = json_graph.node_link_graph(
graph, attrs={'name': 'graph_index'})
else:
linked_graph = json_graph.node_link_graph(graph)
if 0 == nx.number_of_nodes(linked_graph):
return {}
if reverse:
linked_graph = linked_graph.reverse()
if nx.__version__ >= '2.0':
return json_graph.tree_data(
linked_graph,
root=root,
attrs={'id': 'graph_index', 'children': 'children'})
else:
return json_graph.tree_data(linked_graph, root=root)
示例4: deserialize
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def deserialize(data: Dict) -> nx.MultiDiGraph:
"""
Deserialize a networkx.MultiDiGraph from a dictionary.
Parameters
----------
data: dict
Dictionary containing nodes and edges
Returns
-------
networkx.MultiDiGraph
A networkx.MultiDiGraph representation
"""
g = json_graph.node_link_graph(data)
return g
示例5: _node_link_data_to_eden
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def _node_link_data_to_eden(serialized_list):
"""Takes a string list in the serialised node_link_data JSON format and yields networkx graphs."""
for serial_data in serialized_list:
py_obj = json.loads(serial_data)
graph = json_graph.node_link_graph(py_obj)
yield graph
示例6: _load
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def _load(self):
"""Loads input data.
train/test/valid_graph.json => the graph data used for training,
test and validation as json format;
train/test/valid_feats.npy => the feature vectors of nodes as
numpy.ndarry object, it's shape is [n, v],
n is the number of nodes, v is the feature's dimension;
train/test/valid_labels.npy=> the labels of the input nodes, it
is a numpy ndarry, it's like[[0, 0, 1, ... 0],
[0, 1, 1, 0 ...1]], shape of it is n*h, n is the number of nodes,
h is the label's dimension;
train/test/valid/_graph_id.npy => the element in it indicates which
graph the nodes belong to, it is a one dimensional numpy.ndarray
object and the length of it is equal the number of nodes,
it's like [1, 1, 2, 1...20].
"""
print('Loading G...')
if self.mode == 'train':
with open('{}/ppi/train_graph.json'.format(self._dir)) as jsonfile:
g_data = json.load(jsonfile)
self.labels = np.load('{}/ppi/train_labels.npy'.format(self._dir))
self.features = np.load('{}/ppi/train_feats.npy'.format(self._dir))
self.graph = DGLGraph(nx.DiGraph(json_graph.node_link_graph(g_data)))
self.graph_id = np.load('{}/ppi/train_graph_id.npy'.format(self._dir))
if self.mode == 'valid':
with open('{}/ppi/valid_graph.json'.format(self._dir)) as jsonfile:
g_data = json.load(jsonfile)
self.labels = np.load('{}/ppi/valid_labels.npy'.format(self._dir))
self.features = np.load('{}/ppi/valid_feats.npy'.format(self._dir))
self.graph = DGLGraph(nx.DiGraph(json_graph.node_link_graph(g_data)))
self.graph_id = np.load('{}/ppi/valid_graph_id.npy'.format(self._dir))
if self.mode == 'test':
with open('{}/ppi/test_graph.json'.format(self._dir)) as jsonfile:
g_data = json.load(jsonfile)
self.labels = np.load('{}/ppi/test_labels.npy'.format(self._dir))
self.features = np.load('{}/ppi/test_feats.npy'.format(self._dir))
self.graph = DGLGraph(nx.DiGraph(json_graph.node_link_graph(g_data)))
self.graph_id = np.load('{}/ppi/test_graph_id.npy'.format(self._dir))
示例7: loadG
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def loadG(x, d):
return json_graph.node_link_graph(json.load(open(x+'-G.json')), d)
示例8: process
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def process(self):
for s, split in enumerate(['train', 'valid', 'test']):
path = osp.join(self.raw_dir, '{}_graph.json').format(split)
with open(path, 'r') as f:
G = nx.DiGraph(json_graph.node_link_graph(json.load(f)))
x = np.load(osp.join(self.raw_dir, '{}_feats.npy').format(split))
x = torch.from_numpy(x).to(torch.float)
y = np.load(osp.join(self.raw_dir, '{}_labels.npy').format(split))
y = torch.from_numpy(y).to(torch.float)
data_list = []
path = osp.join(self.raw_dir, '{}_graph_id.npy').format(split)
idx = torch.from_numpy(np.load(path)).to(torch.long)
idx = idx - idx.min()
for i in range(idx.max().item() + 1):
mask = idx == i
G_s = G.subgraph(mask.nonzero().view(-1).tolist())
edge_index = torch.tensor(list(G_s.edges)).t().contiguous()
edge_index = edge_index - edge_index.min()
edge_index, _ = remove_self_loops(edge_index)
data = Data(edge_index=edge_index, x=x[mask], y=y[mask])
if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)
data_list.append(data)
torch.save(self.collate(data_list), self.processed_paths[s])
示例9: from_dict
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def from_dict(input_data):
data = dict(input_data)
nodes = list(
map(Cell.from_dict,
filter(
lambda item: not isinstance(item['value'], dict),
data['nodes'])))
cellmap = {n.address(): n for n in nodes}
def cell_from_dict(d):
return Cell.from_dict(d, cellmap=cellmap)
nodes.extend(
list(
map(cell_from_dict,
filter(
lambda item: isinstance(item['value'], dict),
data['nodes']))))
data["nodes"] = [{'id': node} for node in nodes]
links = []
idmap = { node.address(): node for node in nodes }
for el in data['links']:
source_address = el['source']
target_address = el['target']
link = {
'source': idmap[source_address],
'target': idmap[target_address],
}
links.append(link)
data['links'] = links
G = json_graph.node_link_graph(data)
cellmap = {n.address(): n for n in G.nodes()}
named_ranges = data["named_ranges"]
inputs = data["inputs"]
outputs = data["outputs"]
spreadsheet = Spreadsheet()
spreadsheet.build_spreadsheet(
G, cellmap, named_ranges,
inputs=inputs, outputs=outputs)
return spreadsheet
示例10: load_data_ori
# 需要导入模块: from networkx.readwrite import json_graph [as 别名]
# 或者: from networkx.readwrite.json_graph import node_link_graph [as 别名]
def load_data_ori(prefix, normalize=True, load_walks=False):
G_data = json.load(open(prefix + "-G.json"))
G = json_graph.node_link_graph(G_data)
if isinstance(G.nodes()[0], int):
conversion = lambda n : int(n)
else:
conversion = lambda n : n
if os.path.exists(prefix + "-feats.npy"):
feats = np.load(prefix + "-feats.npy")
else:
print("No features present.. Only identity features will be used.")
feats = None
id_map = json.load(open(prefix + "-id_map.json"))
id_map = {conversion(k):int(v) for k,v in id_map.items()}
walks = []
class_map = json.load(open(prefix + "-class_map.json"))
if isinstance(list(class_map.values())[0], list):
lab_conversion = lambda n : n
else:
lab_conversion = lambda n : int(n)
class_map = {conversion(k):lab_conversion(v) for k,v in class_map.items()}
## Remove all nodes that do not have val/test annotations
## (necessary because of networkx weirdness with the Reddit data)
broken_count = 0
for node in G.nodes():
if not 'val' in G.node[node] or not 'test' in G.node[node]:
G.remove_node(node)
broken_count += 1
print("Removed {:d} nodes that lacked proper annotations due to networkx versioning issues".format(broken_count))
## Make sure the graph has edge train_removed annotations
## (some datasets might already have this..)
print("Loaded data.. now preprocessing..")
for edge in G.edges():
if (G.node[edge[0]]['val'] or G.node[edge[1]]['val'] or
G.node[edge[0]]['test'] or G.node[edge[1]]['test']):
G[edge[0]][edge[1]]['train_removed'] = True
else:
G[edge[0]][edge[1]]['train_removed'] = False
if normalize and not feats is None:
from sklearn.preprocessing import StandardScaler
train_ids = np.array([id_map[n] for n in G.nodes() if not G.node[n]['val'] and not G.node[n]['test']])
train_feats = feats[train_ids]
scaler = StandardScaler()
scaler.fit(train_feats)
feats = scaler.transform(feats)
if load_walks:
with open(prefix + "-walks.txt") as fp:
for line in fp:
walks.append(map(conversion, line.split()))
return G, feats, id_map, walks, class_map