当前位置: 首页>>代码示例>>Python>>正文


Python networkx.from_numpy_array方法代码示例

本文整理汇总了Python中networkx.from_numpy_array方法的典型用法代码示例。如果您正苦于以下问题:Python networkx.from_numpy_array方法的具体用法?Python networkx.from_numpy_array怎么用?Python networkx.from_numpy_array使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在networkx的用法示例。


在下文中一共展示了networkx.from_numpy_array方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: as_graph

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def as_graph(self, directed=True):

        if self.normalized_difference.ndim > 2:
            raise MarkovError("You can only graph one-step chains.")

        try:
            import networkx as nx
        except ImportError:
            nx = None

        if nx is None:
            print("Please install networkx with `pip install networkx`.")
            return

        if directed:
            alg = nx.DiGraph
        else:
            alg = nx.Graph

        G = nx.from_numpy_array(self.normalized_difference, create_using=alg)
        nx.set_node_attributes(G, self._state_dict, 'state')
        return G 
开发者ID:agile-geoscience,项目名称:striplog,代码行数:24,代码来源:markov.py

示例2: obfuscator

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def obfuscator(a_string):
    filename = a_string.replace(" ", "_") + ".png"

    #Create an image of our string using Imagemagick -- image must be square
    subprocess.run(["convert", "-background","white", "-fill", "black",
                    "-size",
                    f"{graph_order_and_image_dim}x{graph_order_and_image_dim}",
                    "caption:" + a_string, filename])

    #Turn our image into a numpy array
    string_as_image = Image.open(filename)
    string_as_array = np.array(string_as_image)
    #We just need an array of 1's and 0's
    string_as_array[string_as_array > 0] = 1

    #Turn our array into a graph by treating it as an adjacency matrix
    string_as_graph = nx.from_numpy_array(string_as_array,
                                          create_using=nx.DiGraph)

    #Obfuscated string is a dictionary of dictionaries of this graph:
    return nx.to_dict_of_dicts(string_as_graph, edge_data=1) 
开发者ID:python-discord,项目名称:esoteric-python-challenges,代码行数:23,代码来源:salts_solution.py

示例3: clustering

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def clustering(self, threshold):
        """分不同词性的聚类

        :return: partition: dict {word_id: cluster_id}
        """
        print("Louvain clustering")
        partition = {}
        part_offset = 0
        for etype, ners in self.type_entity_dict.items():
            sub_id_mapping = [self.word2id[ner0] for ner0 in ners if ner0 in self.word2id]
            if len(sub_id_mapping) == 0:
                continue
            emb_mat_sub = self.emb_mat[sub_id_mapping, :]
            cos_sims = cosine_similarity(emb_mat_sub)
            cos_sims -= np.eye(len(emb_mat_sub))
            adj_mat = (cos_sims > threshold).astype(int)
            G = nx.from_numpy_array(adj_mat)
            partition_sub = community.best_partition(G)
            for sub_id, main_id in enumerate(sub_id_mapping):
                sub_part_id = partition_sub[sub_id]
                partition[main_id] = sub_part_id + part_offset
            part_offset += max(partition_sub.values()) + 1
        return partition 
开发者ID:blmoistawinde,项目名称:HarvestText,代码行数:25,代码来源:entity_discoverer.py

示例4: setup_class

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def setup_class(self, tmpdir):
        n = 10
        p = 0.5
        wt = np.random.exponential
        wtargs = dict(scale=4)

        np.random.seed(1)

        self.A = gs.simulations.er_np(n, p)
        self.B = gs.simulations.er_np(n, p, wt=wt, wtargs=wtargs)

        G_A = nx.from_numpy_array(self.A)
        G_B = nx.from_numpy_array(self.B)
        G_B = nx.relabel_nodes(G_B, lambda x: x + 10)  # relabel nodes to go from 10-19.

        self.A_path = str(tmpdir / "A_unweighted.edgelist")
        self.B_path = str(tmpdir / "B.edgelist")
        self.root = str(tmpdir)

        nx.write_edgelist(G_A, self.A_path, data=False)
        nx.write_weighted_edgelist(G_B, self.B_path) 
开发者ID:neurodata,项目名称:graspy,代码行数:23,代码来源:test_io.py

示例5: test_from_numpy_array_type

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def test_from_numpy_array_type(self):
        A = np.array([[1]])
        G = nx.from_numpy_array(A)
        assert_equal(type(G[0][0]['weight']), int)

        A = np.array([[1]]).astype(np.float)
        G = nx.from_numpy_array(A)
        assert_equal(type(G[0][0]['weight']), float)

        A = np.array([[1]]).astype(np.str)
        G = nx.from_numpy_array(A)
        assert_equal(type(G[0][0]['weight']), str)

        A = np.array([[1]]).astype(np.bool)
        G = nx.from_numpy_array(A)
        assert_equal(type(G[0][0]['weight']), bool)

        A = np.array([[1]]).astype(np.complex)
        G = nx.from_numpy_array(A)
        assert_equal(type(G[0][0]['weight']), complex)

        A = np.array([[1]]).astype(np.object)
        assert_raises(TypeError, nx.from_numpy_array, A) 
开发者ID:holzschu,项目名称:Carnets,代码行数:25,代码来源:test_convert_numpy.py

示例6: convert

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def convert(something):  # use networkx conversion from numpy array
    # g = nx.from_numpy_matrix(someNPMat)
    # print(type(something))
    g = nx.from_numpy_array(something)
    return g 
开发者ID:palash1992,项目名称:GEM-Benchmark,代码行数:7,代码来源:kronecker_generator.py

示例7: create_graph

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def create_graph(A, create_using=None, remove_self_loops=True):
    """Flexibly creating a networkx graph from a numpy array.

    Parameters
    ----------
    A (np.ndarray)
        A numpy array.

    create_using (nx.Graph or None)
        Create the graph using a specific networkx graph. Can be used for
        forcing an asymmetric matrix to create an undirected graph, for
        example.

    remove_self_loops (bool)
        If True, remove the diagonal of the matrix before creating the
        graph object.

    Returns
    -------
    G
        A graph, typically a nx.Graph or nx.DiGraph.

    """
    if remove_self_loops:
        np.fill_diagonal(A, 0)

    if create_using is None:
        if np.allclose(A, A.T):
            G = nx.from_numpy_array(A, create_using=nx.Graph())
        else:
            G = nx.from_numpy_array(A, create_using=nx.DiGraph())
    else:
        G = nx.from_numpy_array(A, create_using=create_using)

    return G 
开发者ID:netsiphd,项目名称:netrd,代码行数:37,代码来源:graph.py

示例8: make_all_dists

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def make_all_dists(bin_adj, dmax, use_weights=False):
    g = nx.from_numpy_array(bin_adj.detach().numpy())
    if not use_weights:
        lengths = nx.shortest_path_length(g)
    else:
        lengths = nx.shortest_path_length(g, weight='weight')
    dist = torch.zeros_like(bin_adj)
    for u, lens_u in lengths:
        for v in range(bin_adj.shape[0]):
            if v in lens_u:
                dist[u,v] = lens_u[v]
            else:
                dist[u,v] = dmax
    return dist 
开发者ID:bwilder0,项目名称:clusternet,代码行数:16,代码来源:kcenter.py

示例9: test_graphin

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def test_graphin(self):
        G = nx.from_numpy_array(self.A)
        np.testing.assert_array_equal(nx.to_numpy_array(G), gs.utils.import_graph(G)) 
开发者ID:neurodata,项目名称:graspy,代码行数:5,代码来源:test_io.py

示例10: test_graphin

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def test_graphin(self):
        G = nx.from_numpy_array(self.A)
        np.testing.assert_array_equal(nx.to_numpy_array(G), gus.import_graph(G)) 
开发者ID:neurodata,项目名称:graspy,代码行数:5,代码来源:test_utils.py

示例11: test_from_numpy_matrix_type

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def test_from_numpy_matrix_type(self):
        A = np.matrix([[1]])
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), int)

        A = np.matrix([[1]]).astype(np.float)
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), float)

        A = np.matrix([[1]]).astype(np.str)
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), str)

        A = np.matrix([[1]]).astype(np.bool)
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), bool)

        A = np.matrix([[1]]).astype(np.complex)
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), complex)

        A = np.matrix([[1]]).astype(np.object)
        assert_raises(TypeError, nx.from_numpy_matrix, A)

        G = nx.cycle_graph(3)
        A = nx.adj_matrix(G).todense()
        H = nx.from_numpy_matrix(A)
        assert_true(all(type(m) == int and type(n) == int for m, n in H.edges()))
        H = nx.from_numpy_array(A)
        assert_true(all(type(m) == int and type(n) == int for m, n in H.edges())) 
开发者ID:holzschu,项目名称:Carnets,代码行数:32,代码来源:test_convert_numpy.py

示例12: identity_conversion

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def identity_conversion(self, G, A, create_using):
        assert(A.sum() > 0)
        GG = nx.from_numpy_array(A, create_using=create_using)
        self.assert_equal(G, GG)
        GW = nx.to_networkx_graph(A, create_using=create_using)
        self.assert_equal(G, GW)
        GI = nx.empty_graph(0, create_using).__class__(A)
        self.assert_equal(G, GI) 
开发者ID:holzschu,项目名称:Carnets,代码行数:10,代码来源:test_convert_numpy.py

示例13: test_shape

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def test_shape(self):
        "Conversion from non-square array."
        A = np.array([[1, 2, 3], [4, 5, 6]])
        assert_raises(nx.NetworkXError, nx.from_numpy_array, A) 
开发者ID:holzschu,项目名称:Carnets,代码行数:6,代码来源:test_convert_numpy.py

示例14: test_from_numpy_array_dtype

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def test_from_numpy_array_dtype(self):
        dt = [('weight', float), ('cost', int)]
        A = np.array([[(1.0, 2)]], dtype=dt)
        G = nx.from_numpy_array(A)
        assert_equal(type(G[0][0]['weight']), float)
        assert_equal(type(G[0][0]['cost']), int)
        assert_equal(G[0][0]['cost'], 2)
        assert_equal(G[0][0]['weight'], 1.0) 
开发者ID:holzschu,项目名称:Carnets,代码行数:10,代码来源:test_convert_numpy.py

示例15: test_symmetric

# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import from_numpy_array [as 别名]
def test_symmetric(self):
        """Tests that a symmetric array has edges added only once to an
        undirected multigraph when using :func:`networkx.from_numpy_array`.

        """
        A = np.array([[0, 1], [1, 0]])
        G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
        expected = nx.MultiGraph()
        expected.add_edge(0, 1, weight=1)
        assert_graphs_equal(G, expected) 
开发者ID:holzschu,项目名称:Carnets,代码行数:12,代码来源:test_convert_numpy.py


注:本文中的networkx.from_numpy_array方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。