本文整理汇总了Python中networkx.NetworkXNoPath方法的典型用法代码示例。如果您正苦于以下问题:Python networkx.NetworkXNoPath方法的具体用法?Python networkx.NetworkXNoPath怎么用?Python networkx.NetworkXNoPath使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类networkx
的用法示例。
在下文中一共展示了networkx.NetworkXNoPath方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_BEST_DES
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def compute_BEST_DES(self, node_src, alloc_DES, sim, DES_dst,message):
try:
bestLong = float('inf')
minPath = []
bestDES = []
#print len(DES_dst)
for dev in DES_dst:
#print "DES :",dev
node_dst = alloc_DES[dev]
path = list(nx.shortest_path(sim.topology.G, source=node_src, target=node_dst))
long = len(path)
if long < bestLong:
bestLong = long
minPath = path
bestDES = dev
#print bestDES,minPath
return minPath, bestDES
except (nx.NetworkXNoPath, nx.NodeNotFound) as e:
self.logger.warning("There is no path between two nodes: %s - %s " % (node_src, node_dst))
# print "Simulation ends?"
return [], None
示例2: get_path_iter
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def get_path_iter(graph, source, target, path_length, loop):
"""Return a generator of paths with path_length cutoff from source to
target."""
path_iter = nx.all_simple_paths(graph, source, target, path_length)
try:
for p in path_iter:
path = deepcopy(p)
# Remove common target from a path.
path.remove(target)
if loop:
path.append(path[0])
# A path should contain at least one edge
if len(path) < 2:
continue
yield path
except nx.NetworkXNoPath:
pass
示例3: has_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def has_path(G, source, target):
"""Return True if G has a path from source to target, False otherwise.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path
target : node
Ending node for path
"""
try:
sp = nx.shortest_path(G,source, target)
except nx.NetworkXNoPath:
return False
return True
示例4: has_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def has_path(G, source, target):
"""Returns *True* if *G* has a path from *source* to *target*.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path
target : node
Ending node for path
"""
try:
nx.shortest_path(G, source, target)
except nx.NetworkXNoPath:
return False
return True
示例5: test_bidirectional_shortest_path_restricted_directed_cycle
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def test_bidirectional_shortest_path_restricted_directed_cycle():
directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
length, path = _bidirectional_shortest_path(directed_cycle, 0, 3)
assert_equal(path, [0, 1, 2, 3])
assert_raises(
nx.NetworkXNoPath,
_bidirectional_shortest_path,
directed_cycle,
0, 3,
ignore_nodes=[1],
)
length, path = _bidirectional_shortest_path(directed_cycle, 0, 3,
ignore_edges=[(2, 1)])
assert_equal(path, [0, 1, 2, 3])
assert_raises(
nx.NetworkXNoPath,
_bidirectional_shortest_path,
directed_cycle,
0, 3,
ignore_edges=[(1, 2)],
)
示例6: has_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def has_path(G, source, target):
"""Return *True* if *G* has a path from *source* to *target*.
Parameters
----------
G : NetworkX graph
source : node
Starting node for path
target : node
Ending node for path
"""
try:
sp = nx.shortest_path(G, source, target)
except nx.NetworkXNoPath:
return False
return True
示例7: plot_path
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def plot_path(self, frm_node, to_node, levels=1, add_to_exsting=False):
"""Plot shortest path between two nodes"""
try:
path = nx.shortest_path(self.dataG, frm_node, to_node)
except nx.NetworkXNoPath as e:
tkm.showerror("No path", str(e))
return
except nx.NetworkXError as e:
tkm.showerror("Node not in graph", str(e))
return
graph = self.dataG.subgraph(self._neighbors(path,levels=levels))
if add_to_exsting:
self._plot_additional(graph.nodes())
else:
self.clear()
self._plot_graph(graph)
# Mark the path
if levels > 0 or add_to_exsting:
for u, v in zip(path[:-1], path[1:]):
u_disp = self._find_disp_node(u)
v_disp = self._find_disp_node(v)
for key, value in self.dispG.edge[u_disp][v_disp].items():
self.mark_edge(u_disp, v_disp, key)
示例8: _check_rule_typing
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def _check_rule_typing(hierarchy, rule_id, graph_id, lhs_mapping, rhs_mapping):
all_paths = dict(nx.all_pairs_shortest_path(hierarchy))
paths_from_target = {}
for s in hierarchy.nodes():
if s == graph_id:
for key in all_paths[graph_id].keys():
paths_from_target[key] = all_paths[graph_id][key]
for t in paths_from_target.keys():
if t != graph_id:
new_lhs_h = compose(
lhs_mapping,
hierarchy.compose_path_typing(paths_from_target[t]))
new_rhs_h = compose(
rhs_mapping,
hierarchy.compose_path_typing(paths_from_target[t]))
try:
# find homomorphisms from s to t via other paths
s_t_paths = nx.all_shortest_paths(hierarchy, rule_id, t)
for path in s_t_paths:
lhs_h, rhs_h = hierarchy.compose_path_typing(path)
if lhs_h != new_lhs_h:
raise HierarchyError(
"Invalid lhs typing: homomorphism does not "
"commute with an existing "
"path from '%s' to '%s'!" % (s, t)
)
if rhs_h != new_rhs_h:
raise HierarchyError(
"Invalid rhs typing: homomorphism does not "
"commute with an existing " +
"path from '%s' to '%s'!" % (s, t)
)
except(nx.NetworkXNoPath):
pass
return
示例9: _check_instance
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def _check_instance(hierarchy, graph_id, pattern, instance, pattern_typing):
# Check that the homomorphism is valid
try:
check_homomorphism(
pattern,
hierarchy.get_graph(graph_id),
instance,
total=True
)
except InvalidHomomorphism as e:
raise RewritingError(
"Homomorphism from the pattern to the instance subgraph "
"is not valid, got: '{}'".format(e))
# Check that it is a mono
if not is_monic(instance):
raise RewritingError(
"Homomorphism from the pattern to the instance subgraph "
"is not injective")
# Check that instance typing and lhs typing coincide
for node in pattern.nodes():
if pattern_typing:
for typing_graph, typing in pattern_typing.items():
try:
instance_typing = hierarchy.compose_path_typing(
nx.shortest_path(hierarchy, graph_id, typing_graph))
if node in pattern_typing.keys() and\
instance[node] in instance_typing.keys():
if typing[node] != instance_typing[instance[node]]:
raise RewritingError(
"Typing of the instance of LHS does not " +
" coincide with typing of LHS!")
except NetworkXNoPath:
raise RewritingError(
"Graph '%s' is not typed by '%s' specified "
"as a typing graph of the lhs of the rule." %
(graph_id, typing_graph))
示例10: _check_rule_typing
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def _check_rule_typing(self, rule_id, graph_id, lhs_mapping, rhs_mapping):
all_paths = dict(nx.all_pairs_shortest_path(self._graph))
paths_from_target = {}
for s in self.nodes():
if s == graph_id:
for key in all_paths[graph_id].keys():
paths_from_target[key] = all_paths[graph_id][key]
for t in paths_from_target.keys():
if t != graph_id:
new_lhs_h = compose(
lhs_mapping,
self.compose_path_typing(paths_from_target[t]))
new_rhs_h = compose(
rhs_mapping,
self.compose_path_typing(paths_from_target[t]))
try:
# find homomorphisms from s to t via other paths
s_t_paths = nx.all_shortest_paths(self._graph, rule_id, t)
for path in s_t_paths:
lhs_h, _, rhs_h = self.compose_path_typing(path)
if lhs_h != new_lhs_h:
raise HierarchyError(
"Invalid lhs typing: homomorphism does not "
"commute with an existing "
"path from '{}' to '{}'!".format(s, t)
)
if rhs_h != new_rhs_h:
raise HierarchyError(
"Invalid rhs typing: homomorphism does not "
"commute with an existing " +
"path from '{}' to '{}'!".format(s, t)
)
except(nx.NetworkXNoPath):
pass
return
示例11: _makeEdgePaths
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def _makeEdgePaths(self):
"""Make edgePaths dict. (Also removes used edges from _graph.)"""
# sort edges by Y values. the idea is that the straight flow's edges
# will be handled first and will get nicer edges, though we probably
# won't be doing exactly the right thing here.
self.edgeLayoutInfos.sort(
key=lambda eli: (eli.y1, eli.y2 >= eli.y1, abs(eli.y2 - eli.y1)))
edgePaths = {}
for eli in self.edgeLayoutInfos:
try:
path = self._choosePath(eli.p1, eli.p2)
# don't use these edges for any other paths
for p1, p2 in zip(path, path[1:]):
self._graph.remove_edge(p1, p2)
except networkx.NetworkXNoPath:
# TODO: try again with more rect outlines
print('no path! between', p1, p2, file=sys.stderr)
# create direct edge for debugging
path = [p1, p2]
# Force vertical beginning and end of edges.
# TODO: it'd be nicer to include these edges in the graph
path.insert(0, eli.p0)
path.append(eli.p3)
edgePaths[eli.b1Addr, eli.b2Addr] = path
return edgePaths
示例12: compute_DSAR
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def compute_DSAR(self, node_src, alloc_DES, sim, DES_dst,message):
try:
bestSpeed = float('inf')
minPath = []
bestDES = []
#print len(DES_dst)
for dev in DES_dst:
#print "DES :",dev
node_dst = alloc_DES[dev]
path = list(nx.shortest_path(sim.topology.G, source=node_src, target=node_dst))
speed = 0
for i in range(len(path) - 1):
link = (path[i], path[i + 1])
# print "LINK : ",link
# print " BYTES :", message.bytes
speed += sim.topology.G.edges[link][Topology.LINK_PR] + (message.bytes/sim.topology.G.edges[link][Topology.LINK_BW])
#print sim.topology.G.edges[link][Topology.LINK_BW]
att_node = sim.topology.get_nodes_att()[path[-1]]
time_service = message.inst / float(att_node["IPT"])
speed += time_service # HW - computation of last node
#print "SPEED: ",speed
if speed < bestSpeed:
bestSpeed = speed
minPath = path
bestDES = dev
#print bestDES,minPath
return minPath, bestDES
except (nx.NetworkXNoPath, nx.NodeNotFound) as e:
self.logger.warning("There is no path between two nodes: %s - %s " % (node_src, node_dst))
print "Simulation ends?"
return [], None
示例13: compute_DSAR
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def compute_DSAR(self, node_src, alloc_DES, sim, DES_dst,message):
try:
bestSpeed = float('inf')
minPath = []
bestDES = []
# print "LEN %i" %len(DES_dst)
for dev in DES_dst:
#print "DES :",dev
node_dst = alloc_DES[dev]
path = list(nx.shortest_path(sim.topology.G, source=node_src, target=node_dst))
speed = 0
for i in range(len(path) - 1):
link = (path[i], path[i + 1])
#print " LINK : ",link
#print " BYTES :", message.bytes
speed += sim.topology.G.edges[link][Topology.LINK_PR] + (message.bytes/sim.topology.G.edges[link][Topology.LINK_BW])
#print " Spped :" , speed
#print sim.topology.G.edges[link][Topology.LINK_BW]
att_node = sim.topology.get_nodes_att()[path[-1]]
time_service = message.inst / float(att_node["IPT"])
# print "Tims serviice %s" %time_service
speed += time_service # HW - computation of last node
#print "SPEED: ",speed
if speed < bestSpeed:
bestSpeed = speed
minPath = path
bestDES = dev
# print "DES %s PATH %s" %(bestDES,minPath)
return minPath, bestDES
except (nx.NetworkXNoPath, nx.NodeNotFound) as e:
self.logger.warning("There is no path between two nodes: %s - %s " % (node_src, node_dst))
print "Simulation ends?"
return [], None
示例14: compute_DSAR
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def compute_DSAR(self, node_src, alloc_DES, sim, DES_dst,message):
try:
bestSpeed = float('inf')
minPath = []
bestDES = []
#print len(DES_dst)
for dev in DES_dst:
#print "DES :",dev
node_dst = alloc_DES[dev]
path = list(nx.shortest_path(sim.topology.G, source=node_src, target=node_dst))
speed = 0
for i in range(len(path) - 1):
link = (path[i], path[i + 1])
# print "LINK : ",link
# print " BYTES :", message.bytes
speed += sim.topology.G.edges[link][Topology.LINK_PR] + (message.bytes/sim.topology.G.edges[link][Topology.LINK_BW])
#print sim.topology.G.edges[link][Topology.LINK_BW]
att_node = sim.topology.get_nodes_att()[path[-1]]
time_service = message.inst / float(att_node["IPT"])
speed += time_service # HW - computation of last node
#print "SPEED: ",speed
if speed < bestSpeed:
bestSpeed = speed
minPath = path
bestDES = dev
#print bestDES,minPath
return minPath, bestDES
except (nx.NetworkXNoPath, nx.NodeNotFound) as e:
self.logger.warning("There is no path between two nodes: %s - %s " % (node_src, node_dst))
# print "Simulation ends?"
return [], None
示例15: compute_most_near
# 需要导入模块: import networkx [as 别名]
# 或者: from networkx import NetworkXNoPath [as 别名]
def compute_most_near(self,node_src,alloc_DES,sim,DES_dst):
"""
This functions caches the minimun path among client-devices and fog-devices-Module Calculator and it chooses the best calculator process deployed in that node
"""
#By Placement policy we know that:
try:
minLenPath = float('inf')
minPath = []
bestDES = []
for dev in DES_dst:
node_dst = alloc_DES[dev]
path = list(nx.shortest_path(sim.topology.G, source=node_src, target=node_dst))
if len(path)<minLenPath:
minLenPath = len(path)
minPath = path
bestDES = dev
return minPath,bestDES
except nx.NetworkXNoPath as e:
self.logger.warning("There is no path between two nodes: %s - %s " % (node_src, node_dst))
print "Simulation ends?. Time:", sim.env.now
# sim.stop = True ## You can stop all DES process
return [], None
except nx.NodeNotFound as e:
self.logger.warning("Node not found: %s - %s "%(node_src,node_dst))
print "Simulation ends?. Time:",sim.env.now
# sim.stop = True ## You can stop all DES process
return [],None