本文整理汇总了Python中networks.generator方法的典型用法代码示例。如果您正苦于以下问题:Python networks.generator方法的具体用法?Python networks.generator怎么用?Python networks.generator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类networks
的用法示例。
在下文中一共展示了networks.generator方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_generated_data
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def _get_generated_data(num_images_generated, conditional_eval, num_classes):
"""Get generated images."""
noise = tf.random_normal([num_images_generated, 64])
# If conditional, generate class-specific images.
if conditional_eval:
conditioning = util.get_generator_conditioning(
num_images_generated, num_classes)
generator_inputs = (noise, conditioning)
generator_fn = networks.conditional_generator
else:
generator_inputs = noise
generator_fn = networks.generator
# In order for variables to load, use the same variable scope as in the
# train job.
with tf.variable_scope('Generator'):
data = generator_fn(generator_inputs)
return data
示例2: _get_generated_data
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def _get_generated_data(num_images_generated, conditional_eval, num_classes):
"""Get generated images."""
noise = tf.random_normal([num_images_generated, 64])
# If conditional, generate class-specific images.
if conditional_eval:
conditioning = util.get_generator_conditioning(
num_images_generated, num_classes)
generator_inputs = (noise, conditioning)
generator_fn = networks.conditional_generator
else:
generator_inputs = noise
generator_fn = networks.generator
# In order for variables to load, use the same variable scope as in the
# train job.
with tf.variable_scope('Generator'):
data = generator_fn(generator_inputs, is_training=False)
return data
示例3: _define_model
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def _define_model(images_x, images_y):
"""Defines a CycleGAN model that maps between images_x and images_y.
Args:
images_x: A 4D float `Tensor` of NHWC format. Images in set X.
images_y: A 4D float `Tensor` of NHWC format. Images in set Y.
Returns:
A `CycleGANModel` namedtuple.
"""
cyclegan_model = tfgan.cyclegan_model(
generator_fn=networks.generator,
discriminator_fn=networks.discriminator,
data_x=images_x,
data_y=images_y)
# Add summaries for generated images.
tfgan.eval.add_image_comparison_summaries(
cyclegan_model, num_comparisons=3, display_diffs=False)
tfgan.eval.add_gan_model_image_summaries(
cyclegan_model, grid_size=int(np.sqrt(FLAGS.batch_size)))
return cyclegan_model
示例4: _get_optimizer
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def _get_optimizer(gen_lr, dis_lr):
"""Returns generator optimizer and discriminator optimizer.
Args:
gen_lr: A scalar float `Tensor` or a Python number. The Generator learning
rate.
dis_lr: A scalar float `Tensor` or a Python number. The Discriminator
learning rate.
Returns:
A tuple of generator optimizer and discriminator optimizer.
"""
# beta1 follows
# https://github.com/junyanz/CycleGAN/blob/master/options.lua
gen_opt = tf.train.AdamOptimizer(gen_lr, beta1=0.5, use_locking=True)
dis_opt = tf.train.AdamOptimizer(dis_lr, beta1=0.5, use_locking=True)
return gen_opt, dis_opt
示例5: make_inference_graph
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def make_inference_graph(model_name, patch_dim):
"""Build the inference graph for either the X2Y or Y2X GAN.
Args:
model_name: The var scope name 'ModelX2Y' or 'ModelY2X'.
patch_dim: An integer size of patches to feed to the generator.
Returns:
Tuple of (input_placeholder, generated_tensor).
"""
input_hwc_pl = tf.placeholder(tf.float32, [None, None, 3])
# Expand HWC to NHWC
images_x = tf.expand_dims(
data_provider.full_image_to_patch(input_hwc_pl, patch_dim), 0)
with tf.variable_scope(model_name):
with tf.variable_scope('Generator'):
generated = networks.generator(images_x)
return input_hwc_pl, generated
示例6: _define_model
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def _define_model(images_x, images_y):
"""Defines a CycleGAN model that maps between images_x and images_y.
Args:
images_x: A 4D float `Tensor` of NHWC format. Images in set X.
images_y: A 4D float `Tensor` of NHWC format. Images in set Y.
Returns:
A `CycleGANModel` namedtuple.
"""
cyclegan_model = tfgan.cyclegan_model(
generator_fn=networks.generator,
discriminator_fn=networks.discriminator,
data_x=images_x,
data_y=images_y)
# Add summaries for generated images.
tfgan.eval.add_cyclegan_image_summaries(cyclegan_model)
return cyclegan_model
示例7: define_train_ops
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def define_train_ops(gan_model, gan_loss, **kwargs):
"""Defines progressive GAN train ops.
Args:
gan_model: A `GANModel` namedtuple.
gan_loss: A `GANLoss` namedtuple.
**kwargs: A dictionary of
'adam_beta1': A float of Adam optimizer beta1.
'adam_beta2': A float of Adam optimizer beta2.
'generator_learning_rate': A float of generator learning rate.
'discriminator_learning_rate': A float of discriminator learning rate.
Returns:
A tuple of `GANTrainOps` namedtuple and a list variables tracking the state
of optimizers.
"""
with tf.variable_scope('progressive_gan_train_ops') as var_scope:
beta1, beta2 = kwargs['adam_beta1'], kwargs['adam_beta2']
gen_opt = tf.train.AdamOptimizer(kwargs['generator_learning_rate'], beta1,
beta2)
dis_opt = tf.train.AdamOptimizer(kwargs['discriminator_learning_rate'],
beta1, beta2)
gan_train_ops = tfgan.gan_train_ops(gan_model, gan_loss, gen_opt, dis_opt)
return gan_train_ops, tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope.name)
示例8: generate_fixed_z
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def generate_fixed_z():
label = tf.placeholder(tf.float32, [None, NUMS_CLASS])
z = tf.placeholder(tf.float32, [None, 100])
labeled_z = tf.concat([z, label], axis=1)
G = generator("generator")
fake_img = G(labeled_z)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, "./save_para/model.ckpt")
LABELS, Z = label_from_0_to_1()
if not os.path.exists("./generate_fixed_noise"):
os.mkdir("./generate_fixed_noise")
FAKE_IMG = sess.run(fake_img, feed_dict={label: LABELS, z: Z})
for i in range(10):
Image.fromarray(np.uint8((FAKE_IMG[i, :, :, :] + 1) * 127.5)).save("./generate_fixed_noise/" + str(i) + ".jpg")
开发者ID:MingtaoGuo,项目名称:DCGAN_WGAN_WGAN-GP_LSGAN_SNGAN_RSGAN_BEGAN_ACGAN_PGGAN_TensorFlow,代码行数:20,代码来源:generate.py
示例9: generate_fixed_label
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def generate_fixed_label():
label = tf.placeholder(tf.int32, [None])
z = tf.placeholder(tf.float32, [None, 100])
one_hot_label = tf.one_hot(label, NUMS_CLASS)
labeled_z = tf.concat([z, one_hot_label], axis=1)
G = generator("generator")
fake_img = G(labeled_z)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, "./save_para/model.ckpt")
Z = from_noise0_to_noise1()
LABELS = np.ones([10])#woman: LABELS = np.ones([10]), man: LABELS = np.zeros([10])
if not os.path.exists("./generate_fixed_label"):
os.mkdir("./generate_fixed_label")
FAKE_IMG = sess.run(fake_img, feed_dict={label: LABELS, z: Z})
for i in range(10):
Image.fromarray(np.uint8((FAKE_IMG[i, :, :, :] + 1) * 127.5)).save("./generate_fixed_label/" + str(i) + "_" + str(int(LABELS[i])) + ".jpg")
开发者ID:MingtaoGuo,项目名称:DCGAN_WGAN_WGAN-GP_LSGAN_SNGAN_RSGAN_BEGAN_ACGAN_PGGAN_TensorFlow,代码行数:21,代码来源:generate.py
示例10: test_generator
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def test_generator(self):
tf.set_random_seed(1234)
batch_size = 100
noise = tf.random_normal([batch_size, 64])
image = networks.generator(noise)
with self.test_session(use_gpu=True) as sess:
sess.run(tf.global_variables_initializer())
image_np = image.eval()
self.assertAllEqual([batch_size, 32, 32, 3], image_np.shape)
self.assertTrue(np.all(np.abs(image_np) <= 1))
示例11: test_generator_graph
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def test_generator_graph(self):
for shape in ([4, 32, 32], [3, 128, 128], [2, 80, 400]):
tf.reset_default_graph()
img = tf.ones(shape + [3])
output_imgs = networks.generator(img)
self.assertAllEqual(shape + [3], output_imgs.shape.as_list())
示例12: test_generator_graph_unknown_batch_dim
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def test_generator_graph_unknown_batch_dim(self):
img = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
output_imgs = networks.generator(img)
self.assertAllEqual([None, 32, 32, 3], output_imgs.shape.as_list())
示例13: test_generator_invalid_input
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def test_generator_invalid_input(self):
with self.assertRaisesRegexp(ValueError, 'must have rank 4'):
networks.generator(tf.zeros([28, 28, 3]))
示例14: _lr
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def _lr(gen_lr_base, dis_lr_base):
"""Return the generator and discriminator learning rates."""
gen_lr = tf.train.exponential_decay(
learning_rate=gen_lr_base,
global_step=tf.train.get_or_create_global_step(),
decay_steps=100000,
decay_rate=0.8,
staircase=True,)
dis_lr = dis_lr_base
return gen_lr, dis_lr
示例15: test_generator_run_multi_channel
# 需要导入模块: import networks [as 别名]
# 或者: from networks import generator [as 别名]
def test_generator_run_multi_channel(self):
img_batch = tf.zeros([3, 128, 128, 5])
model_output = networks.generator(img_batch)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(model_output)