当前位置: 首页>>代码示例>>Python>>正文


Python networks.discriminator方法代码示例

本文整理汇总了Python中networks.discriminator方法的典型用法代码示例。如果您正苦于以下问题:Python networks.discriminator方法的具体用法?Python networks.discriminator怎么用?Python networks.discriminator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在networks的用法示例。


在下文中一共展示了networks.discriminator方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _define_model

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def _define_model(images_x, images_y):
  """Defines a CycleGAN model that maps between images_x and images_y.

  Args:
    images_x: A 4D float `Tensor` of NHWC format.  Images in set X.
    images_y: A 4D float `Tensor` of NHWC format.  Images in set Y.

  Returns:
    A `CycleGANModel` namedtuple.
  """
  cyclegan_model = tfgan.cyclegan_model(
      generator_fn=networks.generator,
      discriminator_fn=networks.discriminator,
      data_x=images_x,
      data_y=images_y)

  # Add summaries for generated images.
  tfgan.eval.add_image_comparison_summaries(
      cyclegan_model, num_comparisons=3, display_diffs=False)
  tfgan.eval.add_gan_model_image_summaries(
      cyclegan_model, grid_size=int(np.sqrt(FLAGS.batch_size)))

  return cyclegan_model 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:25,代码来源:train.py

示例2: _get_optimizer

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def _get_optimizer(gen_lr, dis_lr):
  """Returns generator optimizer and discriminator optimizer.

  Args:
    gen_lr: A scalar float `Tensor` or a Python number.  The Generator learning
        rate.
    dis_lr: A scalar float `Tensor` or a Python number.  The Discriminator
        learning rate.

  Returns:
    A tuple of generator optimizer and discriminator optimizer.
  """
  # beta1 follows
  # https://github.com/junyanz/CycleGAN/blob/master/options.lua
  gen_opt = tf.train.AdamOptimizer(gen_lr, beta1=0.5, use_locking=True)
  dis_opt = tf.train.AdamOptimizer(dis_lr, beta1=0.5, use_locking=True)
  return gen_opt, dis_opt 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:19,代码来源:train.py

示例3: _define_model

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def _define_model(images_x, images_y):
  """Defines a CycleGAN model that maps between images_x and images_y.

  Args:
    images_x: A 4D float `Tensor` of NHWC format.  Images in set X.
    images_y: A 4D float `Tensor` of NHWC format.  Images in set Y.

  Returns:
    A `CycleGANModel` namedtuple.
  """
  cyclegan_model = tfgan.cyclegan_model(
      generator_fn=networks.generator,
      discriminator_fn=networks.discriminator,
      data_x=images_x,
      data_y=images_y)

  # Add summaries for generated images.
  tfgan.eval.add_cyclegan_image_summaries(cyclegan_model)

  return cyclegan_model 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:22,代码来源:train.py

示例4: define_train_ops

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def define_train_ops(gan_model, gan_loss, **kwargs):
  """Defines progressive GAN train ops.

  Args:
    gan_model: A `GANModel` namedtuple.
    gan_loss: A `GANLoss` namedtuple.
    **kwargs: A dictionary of
        'adam_beta1': A float of Adam optimizer beta1.
        'adam_beta2': A float of Adam optimizer beta2.
        'generator_learning_rate': A float of generator learning rate.
        'discriminator_learning_rate': A float of discriminator learning rate.

  Returns:
    A tuple of `GANTrainOps` namedtuple and a list variables tracking the state
    of optimizers.
  """
  with tf.variable_scope('progressive_gan_train_ops') as var_scope:
    beta1, beta2 = kwargs['adam_beta1'], kwargs['adam_beta2']
    gen_opt = tf.train.AdamOptimizer(kwargs['generator_learning_rate'], beta1,
                                     beta2)
    dis_opt = tf.train.AdamOptimizer(kwargs['discriminator_learning_rate'],
                                     beta1, beta2)
    gan_train_ops = tfgan.gan_train_ops(gan_model, gan_loss, gen_opt, dis_opt)
  return gan_train_ops, tf.get_collection(
      tf.GraphKeys.GLOBAL_VARIABLES, scope=var_scope.name) 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:27,代码来源:train.py

示例5: test_discriminator

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def test_discriminator(self):
    batch_size = 5
    image = tf.random_uniform([batch_size, 32, 32, 3], -1, 1)
    dis_output = networks.discriminator(image, None)
    with self.test_session(use_gpu=True) as sess:
      sess.run(tf.global_variables_initializer())
      dis_output_np = dis_output.eval()

    self.assertAllEqual([batch_size, 1], dis_output_np.shape) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:11,代码来源:networks_test.py

示例6: test_discriminator_run

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def test_discriminator_run(self):
    img_batch = tf.zeros([3, 70, 70, 3])
    disc_output = networks.discriminator(img_batch)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      sess.run(disc_output) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:8,代码来源:networks_test.py

示例7: test_discriminator_graph

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def test_discriminator_graph(self):
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for batch_size, patch_size in zip([3, 6], [70, 128]):
      tf.reset_default_graph()
      img = tf.ones([batch_size, patch_size, patch_size, 3])
      disc_output = networks.discriminator(img)

      self.assertEqual(2, disc_output.shape.ndims)
      self.assertEqual(batch_size, disc_output.shape[0]) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:12,代码来源:networks_test.py

示例8: test_discriminator_invalid_input

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def test_discriminator_invalid_input(self):
    wrong_dim_input = tf.zeros([5, 32, 32])
    with self.assertRaisesRegexp(ValueError, 'Shape must be rank 4'):
      networks.discriminator(wrong_dim_input)

    not_fully_defined = tf.placeholder(tf.float32, [3, None, 32, 3])
    with self.assertRaisesRegexp(ValueError, 'Shape .* is not fully defined'):
      networks.compression_model(not_fully_defined) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:10,代码来源:networks_test.py

示例9: _optimizer

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def _optimizer(gen_lr, dis_lr):
  # First is generator optimizer, second is discriminator.
  adam_kwargs = {
      'epsilon': 1e-8,
      'beta1': 0.5,
  }
  return (tf.train.AdamOptimizer(gen_lr, **adam_kwargs),
          tf.train.AdamOptimizer(dis_lr, **adam_kwargs)) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:10,代码来源:train.py

示例10: _get_gan_model

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def _get_gan_model(generator_inputs, generated_data, real_data,
                   generator_scope):
  """Manually construct and return a GANModel tuple."""
  generator_vars = tf.contrib.framework.get_trainable_variables(generator_scope)

  discriminator_fn = networks.discriminator
  with tf.variable_scope('discriminator') as dis_scope:
    discriminator_gen_outputs = discriminator_fn(generated_data)
  with tf.variable_scope(dis_scope, reuse=True):
    discriminator_real_outputs = discriminator_fn(real_data)
  discriminator_vars = tf.contrib.framework.get_trainable_variables(
      dis_scope)

  # Manually construct GANModel tuple.
  gan_model = tfgan.GANModel(
      generator_inputs=generator_inputs,
      generated_data=generated_data,
      generator_variables=generator_vars,
      generator_scope=generator_scope,
      generator_fn=None,  # not necessary
      real_data=real_data,
      discriminator_real_outputs=discriminator_real_outputs,
      discriminator_gen_outputs=discriminator_gen_outputs,
      discriminator_variables=discriminator_vars,
      discriminator_scope=dis_scope,
      discriminator_fn=discriminator_fn)

  return gan_model 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:30,代码来源:train.py

示例11: test_discriminator_graph

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def test_discriminator_graph(self):
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for batch_size, patch_size in zip([3, 6], [70, 128]):
      tf.reset_default_graph()
      img = tf.ones([batch_size, patch_size, patch_size, 3])
      disc_output = networks.discriminator(img)

      self.assertEqual(2, disc_output.shape.ndims)
      self.assertEqual(batch_size, disc_output.shape.as_list()[0]) 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:12,代码来源:networks_test.py

示例12: _lr

# 需要导入模块: import networks [as 别名]
# 或者: from networks import discriminator [as 别名]
def _lr(gen_lr_base, dis_lr_base):
  """Return the generator and discriminator learning rates."""
  gen_lr = tf.train.exponential_decay(
      learning_rate=gen_lr_base,
      global_step=tf.train.get_or_create_global_step(),
      decay_steps=100000,
      decay_rate=0.8,
      staircase=True,)
  dis_lr = dis_lr_base

  return gen_lr, dis_lr 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:13,代码来源:train.py


注:本文中的networks.discriminator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。