当前位置: 首页>>代码示例>>Python>>正文


Python network.np_to_variable方法代码示例

本文整理汇总了Python中network.np_to_variable方法的典型用法代码示例。如果您正苦于以下问题:Python network.np_to_variable方法的具体用法?Python network.np_to_variable怎么用?Python network.np_to_variable使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在network的用法示例。


在下文中一共展示了network.np_to_variable方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __index__

# 需要导入模块: import network [as 别名]
# 或者: from network import np_to_variable [as 别名]
def __index__(self, i):
        '''bid: image index; pid: patch index, to find slice'''
        bid, pid = self.patch_list[i]
        transform_img = []
        transform_den = []
        transform_raw = []

        transform_raw.append(transforms.Lambda(lambda img: i_crop(img, self.patches[bid][pid], self.crop_size)))
        transform_raw.append(transforms.Lambda(lambda img: i_flip(img, self.filps[i])))
        transform_raw.append(transforms.Lambda(lambda img: np.array(img)))
        transform_raw = transforms.Compose(transform_raw)

        transform_img.append(transforms.Lambda(lambda img: i_crop(img, self.patches[bid][pid], self.crop_size)))
        transform_img.append(transforms.Lambda(lambda img: i_flip(img, self.filps[i])))
        transform_img += [ transforms.ToTensor(),
                           transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
                           ]
        transform_img = transforms.Compose(transform_img)

        transform_den.append(transforms.Lambda(lambda img: d_crop(img, self.patches[bid][pid], self.crop_size)))
        transform_den.append(transforms.Lambda(lambda img: d_flip(img, self.filps[i])))
        transform_den += [transforms.Lambda(lambda den: network.np_to_variable(den, is_cuda=False, is_training=self.training))]
        transform_den = transforms.Compose(transform_den)

        img, den, gt_count = self.dataloader[bid]

        return transform_img(img.copy()), transform_den(den), transform_raw(img.copy()), gt_count, i 
开发者ID:Legion56,项目名称:Counting-ICCV-DSSINet,代码行数:29,代码来源:sampler.py

示例2: forward

# 需要导入模块: import network [as 别名]
# 或者: from network import np_to_variable [as 别名]
def forward(self,  im_data, gt_data=None):        
        im_data = network.np_to_variable(im_data, is_cuda=True, is_training=self.training)                
        density_map = self.DME(im_data)
        
        if self.training:                        
            gt_data = network.np_to_variable(gt_data, is_cuda=True, is_training=self.training)            
            self.loss_mse = self.build_loss(density_map, gt_data)
            
        return density_map 
开发者ID:svishwa,项目名称:crowdcount-mcnn,代码行数:11,代码来源:crowd_count.py

示例3: forward

# 需要导入模块: import network [as 别名]
# 或者: from network import np_to_variable [as 别名]
def forward(self,  im_data, gt_data=None, gt_cls_label=None, ce_weights=None):        
        im_data = network.np_to_variable(im_data, is_cuda=True, is_training=self.training)                        
        density_map, density_cls_score = self.CCN(im_data)
        density_cls_prob = F.softmax(density_cls_score)
        
        if self.training:                        
            gt_data = network.np_to_variable(gt_data, is_cuda=True, is_training=self.training)            
            gt_cls_label = network.np_to_variable(gt_cls_label, is_cuda=True, is_training=self.training,dtype=torch.FloatTensor)                        
            self.loss_mse, self.cross_entropy = self.build_loss(density_map, density_cls_prob, gt_data, gt_cls_label, ce_weights)
            
            
        return density_map 
开发者ID:svishwa,项目名称:crowdcount-cascaded-mtl,代码行数:14,代码来源:crowd_count.py

示例4: forward

# 需要导入模块: import network [as 别名]
# 或者: from network import np_to_variable [as 别名]
def forward(self, im_data, gt_data=None):        
        im_data = network.np_to_variable(im_data, is_cuda=True, is_training=self.training)                
        density_map = self.DME(im_data)
        if self.training:                        
            gt_data = network.np_to_variable(gt_data, is_cuda=True, is_training=self.training)            
            self.loss_mse = self.build_loss(density_map, gt_data)
            
        return density_map 
开发者ID:siyuhuang,项目名称:crowdcount-stackpool,代码行数:10,代码来源:crowd_count.py

示例5: forward

# 需要导入模块: import network [as 别名]
# 或者: from network import np_to_variable [as 别名]
def forward(self, im_data, im_info, gt_boxes=None, gt_ishard=None, dontcare_areas=None):
        im_data = network.np_to_variable(im_data, is_cuda=True)
        im_data = im_data.permute(0, 3, 1, 2)
        features = self.features(im_data)

        rpn_conv1 = self.conv1(features)

        # rpn score
        rpn_cls_score = self.score_conv(rpn_conv1)
        rpn_cls_score_reshape = self.reshape_layer(rpn_cls_score, 2)
        rpn_cls_prob = F.softmax(rpn_cls_score_reshape)
        rpn_cls_prob_reshape = self.reshape_layer(rpn_cls_prob, len(self.anchor_scales)*3*2)

        # rpn boxes
        rpn_bbox_pred = self.bbox_conv(rpn_conv1)

        # proposal layer
        cfg_key = 'TRAIN' if self.training else 'TEST'
        rois = self.proposal_layer(rpn_cls_prob_reshape, rpn_bbox_pred, im_info,
                                   cfg_key, self._feat_stride, self.anchor_scales)

        # generating training labels and build the rpn loss
        if self.training:
            assert gt_boxes is not None
            rpn_data = self.anchor_target_layer(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas,
                                                im_info, self._feat_stride, self.anchor_scales)
            self.cross_entropy, self.loss_box = self.build_loss(rpn_cls_score_reshape, rpn_bbox_pred, rpn_data)

        return features, rois 
开发者ID:longcw,项目名称:faster_rcnn_pytorch,代码行数:31,代码来源:faster_rcnn.py

示例6: proposal_layer

# 需要导入模块: import network [as 别名]
# 或者: from network import np_to_variable [as 别名]
def proposal_layer(rpn_cls_prob_reshape, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchor_scales):
        rpn_cls_prob_reshape = rpn_cls_prob_reshape.data.cpu().numpy()
        rpn_bbox_pred = rpn_bbox_pred.data.cpu().numpy()
        x = proposal_layer_py(rpn_cls_prob_reshape, rpn_bbox_pred, im_info, cfg_key, _feat_stride, anchor_scales)
        x = network.np_to_variable(x, is_cuda=True)
        return x.view(-1, 5) 
开发者ID:longcw,项目名称:faster_rcnn_pytorch,代码行数:8,代码来源:faster_rcnn.py

示例7: anchor_target_layer

# 需要导入模块: import network [as 别名]
# 或者: from network import np_to_variable [as 别名]
def anchor_target_layer(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, _feat_stride, anchor_scales):
        """
        rpn_cls_score: for pytorch (1, Ax2, H, W) bg/fg scores of previous conv layer
        gt_boxes: (G, 5) vstack of [x1, y1, x2, y2, class]
        gt_ishard: (G, 1), 1 or 0 indicates difficult or not
        dontcare_areas: (D, 4), some areas may contains small objs but no labelling. D may be 0
        im_info: a list of [image_height, image_width, scale_ratios]
        _feat_stride: the downsampling ratio of feature map to the original input image
        anchor_scales: the scales to the basic_anchor (basic anchor is [16, 16])
        ----------
        Returns
        ----------
        rpn_labels : (1, 1, HxA, W), for each anchor, 0 denotes bg, 1 fg, -1 dontcare
        rpn_bbox_targets: (1, 4xA, H, W), distances of the anchors to the gt_boxes(may contains some transform)
                        that are the regression objectives
        rpn_bbox_inside_weights: (1, 4xA, H, W) weights of each boxes, mainly accepts hyper param in cfg
        rpn_bbox_outside_weights: (1, 4xA, H, W) used to balance the fg/bg,
        beacuse the numbers of bgs and fgs mays significiantly different
        """
        rpn_cls_score = rpn_cls_score.data.cpu().numpy()
        rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights = \
            anchor_target_layer_py(rpn_cls_score, gt_boxes, gt_ishard, dontcare_areas, im_info, _feat_stride, anchor_scales)

        rpn_labels = network.np_to_variable(rpn_labels, is_cuda=True, dtype=torch.LongTensor)
        rpn_bbox_targets = network.np_to_variable(rpn_bbox_targets, is_cuda=True)
        rpn_bbox_inside_weights = network.np_to_variable(rpn_bbox_inside_weights, is_cuda=True)
        rpn_bbox_outside_weights = network.np_to_variable(rpn_bbox_outside_weights, is_cuda=True)

        return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights 
开发者ID:longcw,项目名称:faster_rcnn_pytorch,代码行数:31,代码来源:faster_rcnn.py

示例8: proposal_target_layer

# 需要导入模块: import network [as 别名]
# 或者: from network import np_to_variable [as 别名]
def proposal_target_layer(rpn_rois, gt_boxes, gt_ishard, dontcare_areas, num_classes):
        """
        ----------
        rpn_rois:  (1 x H x W x A, 5) [0, x1, y1, x2, y2]
        gt_boxes: (G, 5) [x1 ,y1 ,x2, y2, class] int
        # gt_ishard: (G, 1) {0 | 1} 1 indicates hard
        dontcare_areas: (D, 4) [ x1, y1, x2, y2]
        num_classes
        ----------
        Returns
        ----------
        rois: (1 x H x W x A, 5) [0, x1, y1, x2, y2]
        labels: (1 x H x W x A, 1) {0,1,...,_num_classes-1}
        bbox_targets: (1 x H x W x A, K x4) [dx1, dy1, dx2, dy2]
        bbox_inside_weights: (1 x H x W x A, Kx4) 0, 1 masks for the computing loss
        bbox_outside_weights: (1 x H x W x A, Kx4) 0, 1 masks for the computing loss
        """
        rpn_rois = rpn_rois.data.cpu().numpy()
        rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights = \
            proposal_target_layer_py(rpn_rois, gt_boxes, gt_ishard, dontcare_areas, num_classes)
        # print labels.shape, bbox_targets.shape, bbox_inside_weights.shape
        rois = network.np_to_variable(rois, is_cuda=True)
        labels = network.np_to_variable(labels, is_cuda=True, dtype=torch.LongTensor)
        bbox_targets = network.np_to_variable(bbox_targets, is_cuda=True)
        bbox_inside_weights = network.np_to_variable(bbox_inside_weights, is_cuda=True)
        bbox_outside_weights = network.np_to_variable(bbox_outside_weights, is_cuda=True)

        return rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights 
开发者ID:longcw,项目名称:faster_rcnn_pytorch,代码行数:30,代码来源:faster_rcnn.py


注:本文中的network.np_to_variable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。