本文整理汇总了Python中nets.resnet_v2.resnet_v2_152方法的典型用法代码示例。如果您正苦于以下问题:Python resnet_v2.resnet_v2_152方法的具体用法?Python resnet_v2.resnet_v2_152怎么用?Python resnet_v2.resnet_v2_152使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.resnet_v2
的用法示例。
在下文中一共展示了resnet_v2.resnet_v2_152方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: graph
# 需要导入模块: from nets import resnet_v2 [as 别名]
# 或者: from nets.resnet_v2 import resnet_v2_152 [as 别名]
def graph(x, y, i, x_max, x_min, grad):
eps = 2.0 * FLAGS.max_epsilon / 255.0
num_iter = FLAGS.num_iter
alpha = eps / num_iter
momentum = FLAGS.momentum
num_classes = 1001
# should keep original x here for output
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
logits_v3, end_points_v3 = inception_v3.inception_v3(
input_diversity(x), num_classes=num_classes, is_training=False)
with slim.arg_scope(inception_v4.inception_v4_arg_scope()):
logits_v4, end_points_v4 = inception_v4.inception_v4(
input_diversity(x), num_classes=num_classes, is_training=False)
with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
logits_res_v2, end_points_res_v2 = inception_resnet_v2.inception_resnet_v2(
input_diversity(x), num_classes=num_classes, is_training=False, reuse=True)
with slim.arg_scope(resnet_v2.resnet_arg_scope()):
logits_resnet, end_points_resnet = resnet_v2.resnet_v2_152(
input_diversity(x), num_classes=num_classes, is_training=False)
logits = (logits_v3 + logits_v4 + logits_res_v2 + logits_resnet) / 4
auxlogits = (end_points_v3['AuxLogits'] + end_points_v4['AuxLogits'] + end_points_res_v2['AuxLogits']) / 3
cross_entropy = tf.losses.softmax_cross_entropy(y,
logits,
label_smoothing=0.0,
weights=1.0)
cross_entropy += tf.losses.softmax_cross_entropy(y,
auxlogits,
label_smoothing=0.0,
weights=0.4)
noise = tf.gradients(cross_entropy, x)[0]
noise = tf.nn.depthwise_conv2d(noise, stack_kernel, strides=[1, 1, 1, 1], padding='SAME')
noise = noise / tf.reduce_mean(tf.abs(noise), [1, 2, 3], keep_dims=True)
noise = momentum * grad + noise
x = x + alpha * tf.sign(noise)
x = tf.clip_by_value(x, x_min, x_max)
i = tf.add(i, 1)
return x, y, i, x_max, x_min, noise