本文整理汇总了Python中nets.resnet_v1.resnet_arg_scope方法的典型用法代码示例。如果您正苦于以下问题:Python resnet_v1.resnet_arg_scope方法的具体用法?Python resnet_v1.resnet_arg_scope怎么用?Python resnet_v1.resnet_arg_scope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.resnet_v1
的用法示例。
在下文中一共展示了resnet_v1.resnet_arg_scope方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: endpoints
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def endpoints(image, is_training):
if image.get_shape().ndims != 4:
raise ValueError('Input must be of size [batch, height, width, 3]')
image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))
with tf.contrib.slim.arg_scope(resnet_arg_scope(batch_norm_decay=0.9, weight_decay=0.0)):
_, endpoints = resnet_v1_50(image, num_classes=None, is_training=is_training, global_pool=True)
endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
endpoints['resnet_v1_50/block4'], [1, 2], name='pool5')
return endpoints, 'resnet_v1_50'
示例2: endpoints
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def endpoints(image, is_training):
if image.get_shape().ndims != 4:
raise ValueError('Input must be of size [batch, height, width, 3]')
image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))
with tf.contrib.slim.arg_scope(resnet_arg_scope(batch_norm_decay=0.9, weight_decay=0.0)):
_, endpoints = resnet_v1_101(image, num_classes=None, is_training=is_training, global_pool=True)
endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
endpoints['resnet_v1_101/block4'], [1, 2], name='pool5')
return endpoints, 'resnet_v1_101'
示例3: endpoints
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def endpoints(image, is_training):
if image.get_shape().ndims != 4:
raise ValueError('Input must be of size [batch, height, width, 3]')
image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))
with tf.contrib.slim.arg_scope(resnet_arg_scope(batch_norm_decay=0.9, weight_decay=0.0)):
_, endpoints = resnet_v1_50(image, num_classes=None, is_training=is_training, global_pool=True)
endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
endpoints['resnet_v1_50/block4'], [1, 2], name='pool5', keep_dims=False)
return endpoints, 'resnet_v1_50'
示例4: endpoints
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def endpoints(image, is_training):
if image.get_shape().ndims != 4:
raise ValueError('Input must be of size [batch, height, width, 3]')
image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))
with tf.contrib.slim.arg_scope(resnet_arg_scope(batch_norm_decay=0.9, weight_decay=0.0)):
_, endpoints = resnet_v1_101(image, num_classes=None, is_training=is_training, global_pool=True)
endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
endpoints['resnet_v1_101/block4'], [1, 2], name='pool5', keep_dims=False)
return endpoints, 'resnet_v1_101'
示例5: _resnet_rf
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def _resnet_rf(csv_writer=None):
"""Computes RF and associated parameters for resnet models.
The computed values are written to stdout.
Args:
csv_writer: A CSV writer for RF parameters, which is used if it is not None.
"""
for model_type in _SUPPORTED_RESNET_VARIANTS:
arg_sc = resnet_v1.resnet_arg_scope()
_process_model_rf_and_flops(model_type, csv_writer, arg_sc)
示例6: extract_features
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
with slim.arg_scope(
[resnet_v1.bottleneck],
use_bounded_activations=self._use_bounded_activations):
_, activations = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=self._base_feature_map_depth,
num_layers=self._num_layers,
image_features={
'image_features': self._filter_features(activations)['block3']
})
return feature_maps.values()
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:49,代码来源:ssd_resnet_v1_ppn_feature_extractor.py
示例7: extract_features
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
_, image_features = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=self._is_training and self._batch_norm_trainable,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
image_features = self._filter_features(image_features)
last_feature_map = image_features['block4']
with tf.variable_scope(self._fpn_scope_name, reuse=self._reuse_weights):
with slim.arg_scope(self._conv_hyperparams):
for i in range(5, 7):
last_feature_map = slim.conv2d(
last_feature_map,
num_outputs=256,
kernel_size=[3, 3],
stride=2,
padding='SAME',
scope='block{}'.format(i))
image_features['bottomup_{}'.format(i)] = last_feature_map
feature_maps = feature_map_generators.fpn_top_down_feature_maps(
[
image_features[key] for key in
['block2', 'block3', 'block4', 'bottomup_5', 'bottomup_6']
],
depth=256,
scope='top_down_features')
return feature_maps.values()
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:55,代码来源:ssd_resnet_v1_fpn_feature_extractor.py
示例8: extract_features
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
image_features = self._filter_features(image_features)
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope(self._fpn_scope_name,
reuse=self._reuse_weights):
fpn_features = feature_map_generators.fpn_top_down_feature_maps(
[(key, image_features[key])
for key in ['block2', 'block3', 'block4']],
depth=256)
last_feature_map = fpn_features['top_down_block4']
coarse_features = {}
for i in range(5, 7):
last_feature_map = slim.conv2d(
last_feature_map,
num_outputs=256,
kernel_size=[3, 3],
stride=2,
padding='SAME',
scope='bottom_up_block{}'.format(i))
coarse_features['bottom_up_block{}'.format(i)] = last_feature_map
return [fpn_features['top_down_block2'],
fpn_features['top_down_block3'],
fpn_features['top_down_block4'],
coarse_features['bottom_up_block5'],
coarse_features['bottom_up_block6']]
开发者ID:ambakick,项目名称:Person-Detection-and-Tracking,代码行数:61,代码来源:ssd_resnet_v1_fpn_feature_extractor.py
示例9: GetAttentionPrelogit
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def GetAttentionPrelogit(
self,
images,
weight_decay=0.0001,
attention_nonlinear=_SUPPORTED_ATTENTION_NONLINEARITY[0],
attention_type=_SUPPORTED_ATTENTION_TYPES[0],
kernel=1,
training_resnet=False,
training_attention=False,
reuse=False,
use_batch_norm=True):
"""Constructs attention model on resnet_v1_50.
Args:
images: A tensor of size [batch, height, width, channels].
weight_decay: The parameters for weight_decay regularizer.
attention_nonlinear: Type of non-linearity on top of the attention
function.
attention_type: Type of the attention structure.
kernel: Convolutional kernel to use in attention layers (eg, [3, 3]).
training_resnet: Whether or not the Resnet blocks from the model are in
training mode.
training_attention: Whether or not the attention part of the model is
in training mode.
reuse: Whether or not the layer and its variables should be reused.
use_batch_norm: Whether or not to use batch normalization.
Returns:
prelogits: A tensor of size [batch, 1, 1, channels].
attention_prob: Attention score after the non-linearity.
attention_score: Attention score before the non-linearity.
feature_map: Features extracted from the model, which are not
l2-normalized.
end_points: Set of activations for external use.
"""
# Construct Resnet50 features.
with slim.arg_scope(
resnet_v1.resnet_arg_scope(use_batch_norm=use_batch_norm)):
_, end_points = self.GetResnet50Subnetwork(
images, is_training=training_resnet, reuse=reuse)
feature_map = end_points[self._target_layer_type]
# Construct attention subnetwork on top of features.
with slim.arg_scope(
resnet_v1.resnet_arg_scope(
weight_decay=weight_decay, use_batch_norm=use_batch_norm)):
with slim.arg_scope([slim.batch_norm], is_training=training_attention):
(prelogits, attention_prob, attention_score,
end_points) = self._GetAttentionSubnetwork(
feature_map,
end_points,
attention_nonlinear=attention_nonlinear,
attention_type=attention_type,
kernel=kernel,
reuse=reuse)
return prelogits, attention_prob, attention_score, feature_map, end_points
示例10: _GetAttentionModel
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def _GetAttentionModel(
self,
images,
num_classes,
weight_decay=0.0001,
attention_nonlinear=_SUPPORTED_ATTENTION_NONLINEARITY[0],
attention_type=_SUPPORTED_ATTENTION_TYPES[0],
kernel=1,
training_resnet=False,
training_attention=False,
reuse=False):
"""Constructs attention model on resnet_v1_50.
Args:
images: A tensor of size [batch, height, width, channels]
num_classes: The number of output classes.
weight_decay: The parameters for weight_decay regularizer.
attention_nonlinear: Type of non-linearity on top of the attention
function.
attention_type: Type of the attention structure.
kernel: Convolutional kernel to use in attention layers (eg, [3, 3]).
training_resnet: Whether or not the Resnet blocks from the model are in
training mode.
training_attention: Whether or not the attention part of the model is in
training mode.
reuse: Whether or not the layer and its variables should be reused.
Returns:
logits: A tensor of size [batch, num_classes].
attention_prob: Attention score after the non-linearity.
attention_score: Attention score before the non-linearity.
feature_map: Features extracted from the model, which are not
l2-normalized.
"""
attention_feat, attention_prob, attention_score, feature_map, _ = (
self.GetAttentionPrelogit(
images,
weight_decay,
attention_nonlinear=attention_nonlinear,
attention_type=attention_type,
kernel=kernel,
training_resnet=training_resnet,
training_attention=training_attention,
reuse=reuse))
with slim.arg_scope(
resnet_v1.resnet_arg_scope(
weight_decay=weight_decay, batch_norm_scale=True)):
with slim.arg_scope([slim.batch_norm], is_training=training_attention):
with tf.variable_scope(
_ATTENTION_VARIABLE_SCOPE, values=[attention_feat], reuse=reuse):
logits = slim.conv2d(
attention_feat,
num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
scope='logits')
logits = tf.squeeze(logits, [1, 2], name='spatial_squeeze')
return logits, attention_prob, attention_score, feature_map
示例11: extract_features
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
image_features = self._filter_features(image_features)
last_feature_map = image_features['block4']
with tf.variable_scope(self._fpn_scope_name, reuse=self._reuse_weights):
with slim.arg_scope(self._conv_hyperparams_fn()):
for i in range(5, 7):
last_feature_map = slim.conv2d(
last_feature_map,
num_outputs=256,
kernel_size=[3, 3],
stride=2,
padding='SAME',
scope='block{}'.format(i))
image_features['bottomup_{}'.format(i)] = last_feature_map
feature_maps = feature_map_generators.fpn_top_down_feature_maps(
[
image_features[key] for key in
['block2', 'block3', 'block4', 'bottomup_5', 'bottomup_6']
],
depth=256,
scope='top_down_features')
return feature_maps.values()
示例12: model
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def model(images, weight_decay=1e-5, is_training=True):
'''
define the model, we use slim's implemention of resnet
'''
images = mean_image_subtraction(images)
with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50')
with tf.variable_scope('feature_fusion', values=[end_points.values]):
batch_norm_params = {
'decay': 0.997,
'epsilon': 1e-5,
'scale': True,
'is_training': is_training
}
with slim.arg_scope([slim.conv2d],
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
weights_regularizer=slim.l2_regularizer(weight_decay)):
f = [end_points['pool5'], end_points['pool4'],
end_points['pool3'], end_points['pool2']]
for i in range(4):
print('Shape of f_{} {}'.format(i, f[i].shape))
g = [None, None, None, None]
h = [None, None, None, None]
num_outputs = [None, 128, 64, 32]
for i in range(4):
if i == 0:
h[i] = f[i]
else:
c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs[i], 1)
h[i] = slim.conv2d(c1_1, num_outputs[i], 3)
if i <= 2:
g[i] = unpool(h[i])
else:
g[i] = slim.conv2d(h[i], num_outputs[i], 3)
print('Shape of h_{} {}, g_{} {}'.format(i, h[i].shape, i, g[i].shape))
# here we use a slightly different way for regression part,
# we first use a sigmoid to limit the regression range, and also
# this is do with the angle map
F_score = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
# 4 channel of axis aligned bbox and 1 channel rotation angle
geo_map = slim.conv2d(g[3], 4, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) * FLAGS.text_scale
angle_map = (slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) - 0.5) * np.pi/2 # angle is between [-45, 45]
F_geometry = tf.concat([geo_map, angle_map], axis=-1)
return F_score, F_geometry
示例13: model
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def model(images, weight_decay=1e-5, is_training=True):
'''
define the model, we use slim's implemention of resnet
'''
images = mean_image_subtraction(images)
with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50')
with tf.variable_scope('feature_fusion', values=[end_points.values]):
batch_norm_params = {
'decay': 0.997,
'epsilon': 1e-5,
'scale': True,
'is_training': is_training
}
with slim.arg_scope([slim.conv2d],
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
weights_regularizer=slim.l2_regularizer(weight_decay)):
f = [end_points['pool5'], end_points['pool4'],
end_points['pool3'], end_points['pool2']]
for i in range(4):
print('Shape of f_{} {}'.format(i, f[i].shape))
g = [None, None, None, None]
h = [None, None, None, None]
num_outputs = [None, 128, 64, 32]
for i in range(4):
if i == 0:
h[i] = f[i]
else:
c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs[i], 1)
h[i] = slim.conv2d(c1_1, num_outputs[i], 3)
if i <= 2:
g[i] = unpool(h[i])
else:
g[i] = slim.conv2d(h[i], num_outputs[i], 3)
print('Shape of h_{} {}, g_{} {}'.format(i, h[i].shape, i, g[i].shape))
# here we use a slightly different way for regression part,
# we first use a sigmoid to limit the regression range, and also
# this is do with the angle map
F_score = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
# 4 channel of axis aligned bbox and 1 channel rotation angle
# Note: donot use FLAGS.text_scale here as UAI Inference does not use FLAGS, instead it uses 512
geo_map = slim.conv2d(g[3], 4, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) * 512
angle_map = (slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) - 0.5) * np.pi/2 # angle is between [-45, 45]
F_geometry = tf.concat([geo_map, angle_map], axis=-1)
return F_score, F_geometry
示例14: extract_features
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
min_base_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
image_features = self._filter_features(image_features)
depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth)
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope(self._fpn_scope_name,
reuse=self._reuse_weights):
base_fpn_max_level = min(self._fpn_max_level, 5)
feature_block_list = []
for level in range(self._fpn_min_level, base_fpn_max_level + 1):
feature_block_list.append('block{}'.format(level - 1))
fpn_features = feature_map_generators.fpn_top_down_feature_maps(
[(key, image_features[key]) for key in feature_block_list],
depth=depth_fn(self._additional_layer_depth))
feature_maps = []
for level in range(self._fpn_min_level, base_fpn_max_level + 1):
feature_maps.append(
fpn_features['top_down_block{}'.format(level - 1)])
last_feature_map = fpn_features['top_down_block{}'.format(
base_fpn_max_level - 1)]
# Construct coarse features
for i in range(base_fpn_max_level, self._fpn_max_level):
last_feature_map = slim.conv2d(
last_feature_map,
num_outputs=depth_fn(self._additional_layer_depth),
kernel_size=[3, 3],
stride=2,
padding='SAME',
scope='bottom_up_block{}'.format(i))
feature_maps.append(last_feature_map)
return feature_maps
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:62,代码来源:ssd_resnet_v1_fpn_feature_extractor.py
示例15: extract_features
# 需要导入模块: from nets import resnet_v1 [as 别名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
with slim.arg_scope(
[resnet_v1.bottleneck],
use_bounded_activations=self._use_bounded_activations):
_, activations = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=self._base_feature_map_depth,
num_layers=self._num_layers,
image_features={
'image_features': self._filter_features(activations)['block3']
})
return list(feature_maps.values())