本文整理汇总了Python中nets.pix2pix.pix2pix_discriminator方法的典型用法代码示例。如果您正苦于以下问题:Python pix2pix.pix2pix_discriminator方法的具体用法?Python pix2pix.pix2pix_discriminator怎么用?Python pix2pix.pix2pix_discriminator使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.pix2pix
的用法示例。
在下文中一共展示了pix2pix.pix2pix_discriminator方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_four_layers
# 需要导入模块: from nets import pix2pix [as 别名]
# 或者: from nets.pix2pix import pix2pix_discriminator [as 别名]
def test_four_layers(self):
batch_size = 2
input_size = 256
output_size = self._layer_output_size(input_size)
output_size = self._layer_output_size(output_size)
output_size = self._layer_output_size(output_size)
output_size = self._layer_output_size(output_size, stride=1)
output_size = self._layer_output_size(output_size, stride=1)
images = tf.ones((batch_size, input_size, input_size, 3))
with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
logits, end_points = pix2pix.pix2pix_discriminator(
images, num_filters=[64, 128, 256, 512])
self.assertListEqual([batch_size, output_size, output_size, 1],
logits.shape.as_list())
self.assertListEqual([batch_size, output_size, output_size, 1],
end_points['predictions'].shape.as_list())
示例2: test_four_layers_no_padding
# 需要导入模块: from nets import pix2pix [as 别名]
# 或者: from nets.pix2pix import pix2pix_discriminator [as 别名]
def test_four_layers_no_padding(self):
batch_size = 2
input_size = 256
output_size = self._layer_output_size(input_size, pad=0)
output_size = self._layer_output_size(output_size, pad=0)
output_size = self._layer_output_size(output_size, pad=0)
output_size = self._layer_output_size(output_size, stride=1, pad=0)
output_size = self._layer_output_size(output_size, stride=1, pad=0)
images = tf.ones((batch_size, input_size, input_size, 3))
with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()):
logits, end_points = pix2pix.pix2pix_discriminator(
images, num_filters=[64, 128, 256, 512], padding=0)
self.assertListEqual([batch_size, output_size, output_size, 1],
logits.shape.as_list())
self.assertListEqual([batch_size, output_size, output_size, 1],
end_points['predictions'].shape.as_list())