当前位置: 首页>>代码示例>>Python>>正文


Python Network.__init__方法代码示例

本文整理汇总了Python中nets.network.Network.__init__方法的典型用法代码示例。如果您正苦于以下问题:Python Network.__init__方法的具体用法?Python Network.__init__怎么用?Python Network.__init__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nets.network.Network的用法示例。


在下文中一共展示了Network.__init__方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    # maxpool different from pytorch-resnet, to match tf-faster-rcnn
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    # use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=1)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:24,代码来源:resnet_v1.py

示例2: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    # maxpool different from pytorch-resnet, to match tf-faster-rcnn
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    # use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
    if cfg.FPN:
      self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
    else:
      self.layer4 = self._make_layer(block, 512, layers[3], stride=1)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
开发者ID:yxgeee,项目名称:pytorch-FPN,代码行数:27,代码来源:resnet_v1.py

示例3: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self):
    Network.__init__(self)
    self._feat_stride = [16, ]
    self._feat_compress = [1. / float(self._feat_stride[0]), ]
    self._depth_multiplier = cfg.MOBILENET.DEPTH_MULTIPLIER
    self._net_conv_channels = 512
    self._fc7_channels = 1024 
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:9,代码来源:mobilenet_v1.py

示例4: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self):
    Network.__init__(self)
    self._feat_stride = [16, ]
    self._feat_compress = [1. / float(self._feat_stride[0]), ]
    self._net_conv_channels = 512
    self._fc7_channels = 4096 
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:8,代码来源:vgg16.py

示例5: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self):
        Network.__init__(self)
        # config which branch contained in the SSH  should be the format of ['M1', 'M2', 'M3']
        self._feat_branches = ['M1', 'M2', 'M3']
        self._feat_stride = {'M1': 8, 'M2': 16, 'M3': 32}
        self._Module_boxes = {'M1': 128, 'M2': 256, 'M3': 256}
        self._feat_layers = {'M1': ['Conv2d_5_pointwise', 'Conv2d_13_pointwise'], 'M2': 'Conv2d_13_pointwise', 'M3': 'Conv2d_13_pointwise'}
        self.end_points = {}
        self._depth_multiplier = cfg.MOBILENET.DEPTH_MULTIPLIER
        self._scope = 'MobilenetV1' 
开发者ID:wanjinchang,项目名称:SSH-TensorFlow,代码行数:12,代码来源:mobilenet_v1.py

示例6: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self):
        Network.__init__(self)
        # config which branch contained in the SSH -- should be the format of ['M1', 'M2', 'M3']
        self._feat_branches = ['M1', 'M2', 'M3']
        self._Module_boxes = {'M1': 128, 'M2': 256, 'M3': 256}
        self._feat_stride = {"M1": 8, 'M2': 16, 'M3': 32}
        self._feat_layers = {"M1": ['conv4_3', 'conv5_3'], 'M2': 'conv5_3', 'M3': 'conv5_3'}
        self._scope = 'vgg_16'
        self.end_points = {} 
开发者ID:wanjinchang,项目名称:SSH-TensorFlow,代码行数:11,代码来源:vgg16.py

示例7: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self, darknet53_npz_path=None):
        Network.__init__(self)
        self._feat_branches = {'M1', 'M2', 'M3'}
        self._feat_stride = {'M1': 8, 'M2': 16, 'M3': 32}
        self._feat_layers = {'M1': ['res10', 'res18'], 'M2': 'res18',
                             'M3': 'res22'}
        self._Module_boxes = {'M1': 128, 'M2': 256, 'M3': 256}
        self.end_points = {}
        self._scope = 'Darknet53'
        self.darknet53_npz_path = darknet53_npz_path 
开发者ID:wanjinchang,项目名称:SSH-TensorFlow,代码行数:12,代码来源:darknet53.py

示例8: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self):
        Network.__init__(self)
        # config which branch contained in the SSH  should be the format of ['M1', 'M2', 'M3']
        self._feat_branches = ['M1', 'M2', 'M3']
        self._feat_stride = {'M1': 8, 'M2': 16, 'M3': 32}
        self._feat_layers = {'M1': ['layer_5', 'layer_14'], 'M2': 'layer_14',
                             'M3': 'layer_19'}
        # self._feat_layers = {'M1': ['layer_5/expansion_output', 'layer_19'], 'M2': 'layer_19',
        #                      'M3': 'layer_19'}
        self._Module_boxes = {'M1': 128, 'M2': 256, 'M3': 256}
        self.end_points = {}
        self._depth_multiplier = cfg.MOBILENET_V2.DEPTH_MULTIPLIER
        self._min_depth = cfg.MOBILENET_V2.MIN_DEPTH
        self._scope = 'MobilenetV2' 
开发者ID:wanjinchang,项目名称:SSH-TensorFlow,代码行数:16,代码来源:mobilenet_v2.py

示例9: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self, num_layers=50):
        Network.__init__(self)
        # config which branch contained in the SSH  should be the format of ['M1', 'M2', 'M3']
        self._feat_branches = ['M1', 'M2', 'M3']
        self._feat_stride = {'M1': 8, 'M2': 16, 'M3': 32}
        self._Module_boxes = {'M1': 128, 'M2': 256, 'M3': 256}
        # self._feat_layers = {'M1': ['block2', 'block3'], 'M2': 'block3', 'M3': 'block3'}
        self._feat_layers = {'M1': ['block2', 'block4'], 'M2': 'block4', 'M3': 'block4'}
        self.end_points = {}
        self._num_layers = num_layers
        self._scope = 'resnet_v1_%d' % num_layers
        self._decide_blocks() 
开发者ID:wanjinchang,项目名称:SSH-TensorFlow,代码行数:14,代码来源:resnet_v1.py

示例10: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self):
        Network.__init__(self)
        self._feat_stride = [16, ]
        self._scope = 'mobilenet_v2' 
开发者ID:Sanster,项目名称:tf_ctpn,代码行数:6,代码来源:mobilenet_v2.py

示例11: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self):
        Network.__init__(self)
        self._feat_stride = [16, ]
        self._scope = 'vgg_16' 
开发者ID:Sanster,项目名称:tf_ctpn,代码行数:6,代码来源:vgg16.py

示例12: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self, num_layers=50):
        Network.__init__(self)
        self._feat_stride = [16, ]
        self._num_layers = num_layers
        self._scope = 'resnet_v1_%d' % num_layers
        self._decide_blocks()

    # Do the first few layers manually, because 'SAME' padding can behave inconsistently
    # for images of different sizes: sometimes 0, sometimes 1 
开发者ID:Sanster,项目名称:tf_ctpn,代码行数:11,代码来源:resnet_v1.py

示例13: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self):
        Network.__init__(self)
        self._feat_stride = [16, ]
        self._feat_compress = [1. / float(self._feat_stride[0]), ]
        self._depth_multiplier = cfg.MOBILENET.DEPTH_MULTIPLIER
        self._scope = 'MobilenetV1' 
开发者ID:InnerPeace-Wu,项目名称:densecap-tensorflow,代码行数:8,代码来源:mobilenet_v1.py

示例14: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self, batch_size=1):
    Network.__init__(self, batch_size=batch_size) 
开发者ID:pengzhou1108,项目名称:RGB-N,代码行数:4,代码来源:vgg16.py

示例15: __init__

# 需要导入模块: from nets.network import Network [as 别名]
# 或者: from nets.network.Network import __init__ [as 别名]
def __init__(self, batch_size=1, num_layers=50):
    Network.__init__(self, batch_size=batch_size)
    self._num_layers = num_layers
    self._resnet_scope = 'resnet_v1_%d' % num_layers 
开发者ID:pengzhou1108,项目名称:RGB-N,代码行数:6,代码来源:resnet_v1.py


注:本文中的nets.network.Network.__init__方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。