本文整理汇总了Python中nets.nets_factory.get_network_fn方法的典型用法代码示例。如果您正苦于以下问题:Python nets_factory.get_network_fn方法的具体用法?Python nets_factory.get_network_fn怎么用?Python nets_factory.get_network_fn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.nets_factory
的用法示例。
在下文中一共展示了nets_factory.get_network_fn方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def main(_):
if not FLAGS.output_file:
raise ValueError('You must supply the path to save to with --output_file')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default() as graph:
dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train',
FLAGS.dataset_dir)
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=(dataset.num_classes - FLAGS.labels_offset),
is_training=FLAGS.is_training)
if hasattr(network_fn, 'default_image_size'):
image_size = network_fn.default_image_size
else:
image_size = FLAGS.default_image_size
placeholder = tf.placeholder(name='input', dtype=tf.float32,
shape=[1, image_size, image_size, 3])
network_fn(placeholder)
graph_def = graph.as_graph_def()
with gfile.GFile(FLAGS.output_file, 'wb') as f:
f.write(graph_def.SerializeToString())
示例2: main
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def main(_):
if not FLAGS.output_file:
raise ValueError('You must supply the path to save to with --output_file')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default() as graph:
dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train',
FLAGS.dataset_dir)
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=(dataset.num_classes - FLAGS.labels_offset),
is_training=FLAGS.is_training)
image_size = FLAGS.image_size or network_fn.default_image_size
placeholder = tf.placeholder(name='input', dtype=tf.float32,
shape=[FLAGS.batch_size, image_size,
image_size, 3])
network_fn(placeholder)
graph_def = graph.as_graph_def()
with gfile.GFile(FLAGS.output_file, 'wb') as f:
f.write(graph_def.SerializeToString())
示例3: main
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def main(_):
if not FLAGS.output_file:
raise ValueError('You must supply the path to save to with --output_file')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default() as graph:
dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train',
FLAGS.dataset_dir)
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=(dataset.num_classes - FLAGS.labels_offset),
is_training=FLAGS.is_training)
image_size = FLAGS.image_size or network_fn.default_image_size
placeholder = tf.placeholder(name='input', dtype=tf.float32,
shape=[FLAGS.batch_size, image_size,
image_size, 3])
network_fn(placeholder)
if FLAGS.quantize:
tf.contrib.quantize.create_eval_graph()
graph_def = graph.as_graph_def()
with gfile.GFile(FLAGS.output_file, 'wb') as f:
f.write(graph_def.SerializeToString())
示例4: testGetNetworkFnFirstHalf
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def testGetNetworkFnFirstHalf(self):
batch_size = 5
num_classes = 1000
for net in list(nets_factory.networks_map.keys())[:10]:
with tf.Graph().as_default() as g, self.test_session(g):
net_fn = nets_factory.get_network_fn(net, num_classes=num_classes)
# Most networks use 224 as their default_image_size
image_size = getattr(net_fn, 'default_image_size', 224)
if net not in ['i3d', 's3dg']:
inputs = tf.random_uniform(
(batch_size, image_size, image_size, 3))
logits, end_points = net_fn(inputs)
self.assertTrue(isinstance(logits, tf.Tensor))
self.assertTrue(isinstance(end_points, dict))
self.assertEqual(logits.get_shape().as_list()[0], batch_size)
self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
示例5: testGetNetworkFnSecondHalf
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def testGetNetworkFnSecondHalf(self):
batch_size = 5
num_classes = 1000
for net in list(nets_factory.networks_map.keys())[10:]:
with tf.Graph().as_default() as g, self.test_session(g):
net_fn = nets_factory.get_network_fn(net, num_classes=num_classes)
# Most networks use 224 as their default_image_size
image_size = getattr(net_fn, 'default_image_size', 224)
if net not in ['i3d', 's3dg']:
inputs = tf.random_uniform(
(batch_size, image_size, image_size, 3))
logits, end_points = net_fn(inputs)
self.assertTrue(isinstance(logits, tf.Tensor))
self.assertTrue(isinstance(end_points, dict))
self.assertEqual(logits.get_shape().as_list()[0], batch_size)
self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
示例6: main
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def main(_):
if not FLAGS.output_file:
raise ValueError('You must supply the path to save to with --output_file')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default() as graph:
dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'validation',
FLAGS.dataset_dir)
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=(dataset.num_classes - FLAGS.labels_offset),
is_training=FLAGS.is_training)
if hasattr(network_fn, 'default_image_size'):
image_size = network_fn.default_image_size
else:
image_size = FLAGS.default_image_size
placeholder = tf.placeholder(name='input', dtype=tf.float32,
shape=[1, image_size, image_size, 3])
network_fn(placeholder)
graph_def = graph.as_graph_def()
with gfile.GFile(FLAGS.output_file, 'wb') as f:
f.write(graph_def.SerializeToString())
示例7: _build_evaluate_model
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def _build_evaluate_model(self):
self.input_image = tf.placeholder(tf.float32, shape=[None, None, 3])
self.style_image = tf.placeholder(tf.float32, shape=[None, None, 3])
preprocess_fn = preprocessing_factory.get_preprocessing(self.config.net_name, is_training=False)
height = self.evaluate_height if self.evaluate_height else self.PREPROCESS_SIZE
width = self.evaluate_width if self.evaluate_width else self.PREPROCESS_SIZE
preprocessed_image = preprocess_fn(self.input_image, height, width, resize_side_min=min(height, width))
images = tf.expand_dims(preprocessed_image, axis=0)
style_images = tf.expand_dims(preprocess_fn(self.style_image, self.PREPROCESS_SIZE, self.PREPROCESS_SIZE), axis=0)
self.swaped_tensor = self._swap_net(images, style_images)
#
# network_fn = nets_factory.get_network_fn(self.config.net_name, num_classes=1, is_training=False)
# _, endpoints_dict = network_fn(images, spatial_squeeze=False)
# self.swaped_tensor = endpoints_dict[self.config.net_name + self.style_layer]
self.generated = self._inverse_net(self.swaped_tensor)
self.evaluate_op = tf.squeeze(self.generated, axis=0)
self.init_op = self._get_network_init_fn()
self.save_variables = [var for var in tf.trainable_variables() if var.name.startswith("inverse_net")]
示例8: _train_inverse
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def _train_inverse(self, generated, swaped_tensor):
preprocess_fn = preprocessing_factory.get_preprocessing(self.config.net_name, is_training=False)
network_fn = nets_factory.get_network_fn(self.config.net_name, num_classes=1, is_training=False)
with tf.variable_scope("", reuse=True):
preprocessed_image = tf.stack([preprocess_fn(img, self.PREPROCESS_SIZE, self.PREPROCESS_SIZE)
for img in tf.unstack(generated, axis=0)])
_, inversed_endpoints_dict = network_fn(preprocessed_image, spatial_squeeze=False)
layer_names = list(inversed_endpoints_dict.keys())
[layer_name] = [l_name for l_name in layer_names if self.style_layer in l_name]
inversed_style_layer = inversed_endpoints_dict[layer_name]
# print(inversed_style_layer.get_shape())
tf.losses.add_loss(tf.nn.l2_loss(swaped_tensor - inversed_style_layer))
self.loss_op = tf.losses.get_total_loss()
train_vars = [var for var in tf.trainable_variables() if var.name.startswith("inverse_net")]
slim.summarize_tensor(self.loss_op, "loss")
slim.summarize_tensors(train_vars)
# print(train_vars)
self.save_variables = train_vars
learning_rate = tf.train.exponential_decay(self.config.learning_rate, self.global_step, 1000, 0.66,
name="learning_rate")
self.train_op = tf.train.AdamOptimizer(learning_rate).minimize(self.loss_op, self.global_step, train_vars)
示例9: prepare_inception_score_classifier
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def prepare_inception_score_classifier(classifier_name, num_classes, images, return_saver=True):
network_fn = nets_factory.get_network_fn(
classifier_name,
num_classes=num_classes,
weight_decay=0.0,
is_training=False,
)
# Note: you may need to change the prediction_fn here.
try:
logits, end_points = network_fn(images, prediction_fn=tf.sigmoid, create_aux_logits=False)
except TypeError:
tf.logging.warning('Cannot specify prediction_fn=tf.sigmoid, create_aux_logits=False.')
logits, end_points = network_fn(images, )
variables_to_restore = slim.get_model_variables(scope=nets_factory.scopes_map[classifier_name])
predictions = end_points['Predictions']
if return_saver:
saver = tf.train.Saver(variables_to_restore)
return predictions, end_points, saver
else:
return predictions, end_points
示例10: testGetNetworkFn
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def testGetNetworkFn(self):
batch_size = 5
num_classes = 1000
for net in nets_factory.networks_map:
with self.test_session():
net_fn = nets_factory.get_network_fn(net, num_classes)
# Most networks use 224 as their default_image_size
image_size = getattr(net_fn, 'default_image_size', 224)
inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
logits, end_points = net_fn(inputs)
self.assertTrue(isinstance(logits, tf.Tensor))
self.assertTrue(isinstance(end_points, dict))
self.assertEqual(logits.get_shape().as_list()[0], batch_size)
self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
示例11: testGetNetworkFnArgScope
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def testGetNetworkFnArgScope(self):
batch_size = 5
num_classes = 10
net = 'cifarnet'
with self.test_session(use_gpu=True):
net_fn = nets_factory.get_network_fn(net, num_classes)
image_size = getattr(net_fn, 'default_image_size', 224)
with slim.arg_scope([slim.model_variable, slim.variable],
device='/CPU:0'):
inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
net_fn(inputs)
weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'CifarNet/conv1')[0]
self.assertDeviceEqual('/CPU:0', weights.device)
示例12: testGetNetworkFnFirstHalf
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def testGetNetworkFnFirstHalf(self):
batch_size = 5
num_classes = 1000
for net in list(nets_factory.networks_map.keys())[:10]:
with tf.Graph().as_default() as g, self.test_session(g):
net_fn = nets_factory.get_network_fn(net, num_classes)
# Most networks use 224 as their default_image_size
image_size = getattr(net_fn, 'default_image_size', 224)
inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
logits, end_points = net_fn(inputs)
self.assertTrue(isinstance(logits, tf.Tensor))
self.assertTrue(isinstance(end_points, dict))
self.assertEqual(logits.get_shape().as_list()[0], batch_size)
self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
示例13: testGetNetworkFnSecondHalf
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def testGetNetworkFnSecondHalf(self):
batch_size = 5
num_classes = 1000
for net in list(nets_factory.networks_map.keys())[10:]:
with tf.Graph().as_default() as g, self.test_session(g):
net_fn = nets_factory.get_network_fn(net, num_classes)
# Most networks use 224 as their default_image_size
image_size = getattr(net_fn, 'default_image_size', 224)
inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
logits, end_points = net_fn(inputs)
self.assertTrue(isinstance(logits, tf.Tensor))
self.assertTrue(isinstance(end_points, dict))
self.assertEqual(logits.get_shape().as_list()[0], batch_size)
self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
示例14: testGetNetworkFnFirstHalf
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def testGetNetworkFnFirstHalf(self):
batch_size = 5
num_classes = 1000
for net in nets_factory.networks_map.keys()[:10]:
with tf.Graph().as_default() as g, self.test_session(g):
net_fn = nets_factory.get_network_fn(net, num_classes)
# Most networks use 224 as their default_image_size
image_size = getattr(net_fn, 'default_image_size', 224)
inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
logits, end_points = net_fn(inputs)
self.assertTrue(isinstance(logits, tf.Tensor))
self.assertTrue(isinstance(end_points, dict))
self.assertEqual(logits.get_shape().as_list()[0], batch_size)
self.assertEqual(logits.get_shape().as_list()[-1], num_classes)
示例15: testGetNetworkFnSecondHalf
# 需要导入模块: from nets import nets_factory [as 别名]
# 或者: from nets.nets_factory import get_network_fn [as 别名]
def testGetNetworkFnSecondHalf(self):
batch_size = 5
num_classes = 1000
for net in nets_factory.networks_map.keys()[10:]:
with tf.Graph().as_default() as g, self.test_session(g):
net_fn = nets_factory.get_network_fn(net, num_classes)
# Most networks use 224 as their default_image_size
image_size = getattr(net_fn, 'default_image_size', 224)
inputs = tf.random_uniform((batch_size, image_size, image_size, 3))
logits, end_points = net_fn(inputs)
self.assertTrue(isinstance(logits, tf.Tensor))
self.assertTrue(isinstance(end_points, dict))
self.assertEqual(logits.get_shape().as_list()[0], batch_size)
self.assertEqual(logits.get_shape().as_list()[-1], num_classes)