本文整理汇总了Python中nets.nasnet.pnasnet.build_pnasnet_large方法的典型用法代码示例。如果您正苦于以下问题:Python pnasnet.build_pnasnet_large方法的具体用法?Python pnasnet.build_pnasnet_large怎么用?Python pnasnet.build_pnasnet_large使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.nasnet.pnasnet
的用法示例。
在下文中一共展示了pnasnet.build_pnasnet_large方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testBuildLogitsLargeModel
# 需要导入模块: from nets.nasnet import pnasnet [as 别名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 别名]
def testBuildLogitsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
auxlogits = end_points['AuxLogits']
predictions = end_points['Predictions']
self.assertListEqual(auxlogits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(predictions.get_shape().as_list(),
[batch_size, num_classes])
示例2: testBuildLogitsLargeModel
# 需要导入模块: from nets.nasnet import pnasnet [as 别名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 别名]
def testBuildLogitsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random.uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
auxlogits = end_points['AuxLogits']
predictions = end_points['Predictions']
self.assertListEqual(auxlogits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(predictions.get_shape().as_list(),
[batch_size, num_classes])
示例3: testBuildNonExistingLayerLargeModel
# 需要导入模块: from nets.nasnet import pnasnet [as 别名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 别名]
def testBuildNonExistingLayerLargeModel(self):
"""Tests that the model is built correctly without unnecessary layers."""
inputs = tf.random_uniform((5, 331, 331, 3))
tf.train.create_global_step()
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
pnasnet.build_pnasnet_large(inputs, 1000)
vars_names = [x.op.name for x in tf.trainable_variables()]
self.assertIn('cell_stem_0/1x1/weights', vars_names)
self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names)
示例4: testBuildPreLogitsLargeModel
# 需要导入模块: from nets.nasnet import pnasnet [as 别名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 别名]
def testBuildPreLogitsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = None
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
net, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
self.assertFalse('AuxLogits' in end_points)
self.assertFalse('Predictions' in end_points)
self.assertTrue(net.op.name.startswith('final_layer/Mean'))
self.assertListEqual(net.get_shape().as_list(), [batch_size, 4320])
示例5: testAllEndPointsShapesLargeModel
# 需要导入模块: from nets.nasnet import pnasnet [as 别名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 别名]
def testAllEndPointsShapesLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
_, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
endpoints_shapes = {'Stem': [batch_size, 42, 42, 540],
'Cell_0': [batch_size, 42, 42, 1080],
'Cell_1': [batch_size, 42, 42, 1080],
'Cell_2': [batch_size, 42, 42, 1080],
'Cell_3': [batch_size, 42, 42, 1080],
'Cell_4': [batch_size, 21, 21, 2160],
'Cell_5': [batch_size, 21, 21, 2160],
'Cell_6': [batch_size, 21, 21, 2160],
'Cell_7': [batch_size, 21, 21, 2160],
'Cell_8': [batch_size, 11, 11, 4320],
'Cell_9': [batch_size, 11, 11, 4320],
'Cell_10': [batch_size, 11, 11, 4320],
'Cell_11': [batch_size, 11, 11, 4320],
'global_pool': [batch_size, 4320],
# Logits and predictions
'AuxLogits': [batch_size, 1000],
'Predictions': [batch_size, 1000],
'Logits': [batch_size, 1000],
}
self.assertEqual(len(end_points), 17)
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
tf.logging.info('Endpoint name: {}'.format(endpoint_name))
expected_shape = endpoints_shapes[endpoint_name]
self.assertIn(endpoint_name, end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
示例6: testNoAuxHeadLargeModel
# 需要导入模块: from nets.nasnet import pnasnet [as 别名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 别名]
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = pnasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
_, end_points = pnasnet.build_pnasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例7: testOverrideHParamsLargeModel
# 需要导入模块: from nets.nasnet import pnasnet [as 别名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 别名]
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = pnasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
_, end_points = pnasnet.build_pnasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42])