本文整理汇总了Python中nets.nasnet.nasnet.nasnet_mobile_arg_scope方法的典型用法代码示例。如果您正苦于以下问题:Python nasnet.nasnet_mobile_arg_scope方法的具体用法?Python nasnet.nasnet_mobile_arg_scope怎么用?Python nasnet.nasnet_mobile_arg_scope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.nasnet.nasnet
的用法示例。
在下文中一共展示了nasnet.nasnet_mobile_arg_scope方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testBuildLogitsMobileModel
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def testBuildLogitsMobileModel(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
logits, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
auxlogits = end_points['AuxLogits']
predictions = end_points['Predictions']
self.assertListEqual(auxlogits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(predictions.get_shape().as_list(),
[batch_size, num_classes])
示例2: testVariablesSetDeviceMobileModel
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def testVariablesSetDeviceMobileModel(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
# Force all Variables to reside on the device.
with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
nasnet.build_nasnet_mobile(inputs, num_classes)
with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
nasnet.build_nasnet_mobile(inputs, num_classes)
for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
self.assertDeviceEqual(v.device, '/cpu:0')
for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
self.assertDeviceEqual(v.device, '/gpu:0')
示例3: pnasnet_mobile_arg_scope
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def pnasnet_mobile_arg_scope(weight_decay=4e-5,
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001):
"""Default arg scope for the PNASNet Mobile ImageNet model."""
return nasnet.nasnet_mobile_arg_scope(weight_decay, batch_norm_decay,
batch_norm_epsilon)
示例4: testBuildPreLogitsMobileModel
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def testBuildPreLogitsMobileModel(self):
batch_size = 5
height, width = 224, 224
num_classes = None
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
net, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
self.assertFalse('AuxLogits' in end_points)
self.assertFalse('Predictions' in end_points)
self.assertTrue(net.op.name.startswith('final_layer/Mean'))
self.assertListEqual(net.get_shape().as_list(), [batch_size, 1056])
示例5: testAllEndPointsShapesMobileModel
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def testAllEndPointsShapesMobileModel(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
_, end_points = nasnet.build_nasnet_mobile(inputs, num_classes)
endpoints_shapes = {'Stem': [batch_size, 28, 28, 88],
'Cell_0': [batch_size, 28, 28, 264],
'Cell_1': [batch_size, 28, 28, 264],
'Cell_2': [batch_size, 28, 28, 264],
'Cell_3': [batch_size, 28, 28, 264],
'Cell_4': [batch_size, 14, 14, 528],
'Cell_5': [batch_size, 14, 14, 528],
'Cell_6': [batch_size, 14, 14, 528],
'Cell_7': [batch_size, 14, 14, 528],
'Cell_8': [batch_size, 7, 7, 1056],
'Cell_9': [batch_size, 7, 7, 1056],
'Cell_10': [batch_size, 7, 7, 1056],
'Cell_11': [batch_size, 7, 7, 1056],
'Reduction_Cell_0': [batch_size, 14, 14, 352],
'Reduction_Cell_1': [batch_size, 7, 7, 704],
'global_pool': [batch_size, 1056],
# Logits and predictions
'AuxLogits': [batch_size, num_classes],
'Logits': [batch_size, num_classes],
'Predictions': [batch_size, num_classes]}
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
tf.logging.info('Endpoint name: {}'.format(endpoint_name))
expected_shape = endpoints_shapes[endpoint_name]
self.assertTrue(endpoint_name in end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
示例6: testNoAuxHeadMobileModel
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def testNoAuxHeadMobileModel(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.mobile_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
_, end_points = nasnet.build_nasnet_mobile(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例7: testUnknownBatchSizeMobileModel
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def testUnknownBatchSizeMobileModel(self):
batch_size = 1
height, width = 224, 224
num_classes = 1000
with self.test_session() as sess:
inputs = tf.placeholder(tf.float32, (None, height, width, 3))
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
logits, _ = nasnet.build_nasnet_mobile(inputs, num_classes)
self.assertListEqual(logits.get_shape().as_list(),
[None, num_classes])
images = tf.random_uniform((batch_size, height, width, 3))
sess.run(tf.global_variables_initializer())
output = sess.run(logits, {inputs: images.eval()})
self.assertEquals(output.shape, (batch_size, num_classes))
示例8: testEvaluationMobileModel
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def testEvaluationMobileModel(self):
batch_size = 2
height, width = 224, 224
num_classes = 1000
with self.test_session() as sess:
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
logits, _ = nasnet.build_nasnet_mobile(eval_inputs,
num_classes,
is_training=False)
predictions = tf.argmax(logits, 1)
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (batch_size,))
示例9: testOverrideHParamsMobileModel
# 需要导入模块: from nets.nasnet import nasnet [as 别名]
# 或者: from nets.nasnet.nasnet import nasnet_mobile_arg_scope [as 别名]
def testOverrideHParamsMobileModel(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.mobile_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_mobile_arg_scope()):
_, end_points = nasnet.build_nasnet_mobile(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 88, 28, 28])