本文整理汇总了Python中nets.mobilenet.mobilenet_v2.training_scope方法的典型用法代码示例。如果您正苦于以下问题:Python mobilenet_v2.training_scope方法的具体用法?Python mobilenet_v2.training_scope怎么用?Python mobilenet_v2.training_scope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.mobilenet.mobilenet_v2
的用法示例。
在下文中一共展示了mobilenet_v2.training_scope方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: training_scope
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import training_scope [as 别名]
def training_scope(l2_weight_decay=1e-4, is_training=None):
"""Arg scope for training MnasFPN."""
with slim.arg_scope(
[slim.conv2d],
weights_initializer=tf.initializers.he_normal(),
weights_regularizer=slim.l2_regularizer(l2_weight_decay)), \
slim.arg_scope(
[slim.separable_conv2d],
weights_initializer=tf.initializers.truncated_normal(
stddev=0.536), # He_normal for 3x3 depthwise kernel.
weights_regularizer=slim.l2_regularizer(l2_weight_decay)), \
slim.arg_scope([slim.batch_norm],
is_training=is_training,
epsilon=0.01,
decay=0.99,
center=True,
scale=True) as s:
return s
示例2: MobileNet
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import training_scope [as 别名]
def MobileNet(depth_multiplier, imgs_in, weight_decay, batch_norm_momentum, is_training):
with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope(is_training=is_training, weight_decay=weight_decay, bn_decay=batch_norm_momentum)):
features, _ = mobilenet_v2.mobilenet_base(imgs_in, depth_multiplier=depth_multiplier, finegrain_classification_mode=depth_multiplier < 1, output_stride=16)
return features
示例3: _image_to_head
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import training_scope [as 别名]
def _image_to_head(self, is_training, reuse=None):
with slim.arg_scope(mobilenet_v2.training_scope(is_training=is_training)):
net, endpoints = mobilenet_v2.mobilenet_base(self._image, conv_defs=CTPN_DEF)
self.variables_to_restore = slim.get_variables_to_restore()
self._act_summaries.append(net)
self._layers['head'] = net
return net
示例4: extract_features
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import training_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例5: extract_features
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import training_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(
is_training=(self._is_training and self._batch_norm_trainable),
bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
# TODO(b/68150321): Enable fused batch norm once quantization
# supports it.
with slim.arg_scope([slim.batch_norm], fused=False):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams):
# TODO(b/68150321): Enable fused batch norm once quantization
# supports it.
with slim.arg_scope([slim.batch_norm], fused=False):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:51,代码来源:ssd_mobilenet_v2_feature_extractor.py
示例6: extract_features
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import training_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
# TODO(b/68150321): Enable fused batch norm once quantization
# supports it.
with slim.arg_scope([slim.batch_norm], fused=False):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
# TODO(b/68150321): Enable fused batch norm once quantization
# supports it.
with slim.arg_scope([slim.batch_norm], fused=False):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例7: extract_features
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import training_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''
][:self._num_layers],
'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:47,代码来源:ssd_mobilenet_v2_feature_extractor.py
示例8: extract_features
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import training_scope [as 别名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''
][:self._num_layers],
'layer_depth': [-1, -1, 512, 256, 256, 128][:self._num_layers],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values())