本文整理汇总了Python中nets.mobilenet.mobilenet_v2.mobilenet_base方法的典型用法代码示例。如果您正苦于以下问题:Python mobilenet_v2.mobilenet_base方法的具体用法?Python mobilenet_v2.mobilenet_base怎么用?Python mobilenet_v2.mobilenet_base使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nets.mobilenet.mobilenet_v2
的用法示例。
在下文中一共展示了mobilenet_v2.mobilenet_base方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testWithOutputStride8
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 别名]
def testWithOutputStride8(self):
out, _ = mobilenet.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF,
output_stride=8,
scope='MobilenetV2')
self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
示例2: testMobilenetBase
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 别名]
def testMobilenetBase(self):
tf.reset_default_graph()
# Verifies that mobilenet_base returns pre-pooling layer.
with slim.arg_scope((mobilenet.depth_multiplier,), min_depth=32):
net, _ = mobilenet_v2.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1)
self.assertEqual(net.get_shape().as_list(), [10, 7, 7, 128])
示例3: testWithOutputStride16
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 别名]
def testWithOutputStride16(self):
tf.reset_default_graph()
out, _ = mobilenet.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF,
output_stride=16)
self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
示例4: testWithOutputStride8AndExplicitPadding
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 别名]
def testWithOutputStride8AndExplicitPadding(self):
tf.reset_default_graph()
out, _ = mobilenet.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF,
output_stride=8,
use_explicit_padding=True,
scope='MobilenetV2')
self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
示例5: testWithOutputStride16AndExplicitPadding
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 别名]
def testWithOutputStride16AndExplicitPadding(self):
tf.reset_default_graph()
out, _ = mobilenet.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF,
output_stride=16,
use_explicit_padding=True)
self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
示例6: _image_to_head
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 别名]
def _image_to_head(self, is_training, reuse=None):
with slim.arg_scope(mobilenet_v2.training_scope(is_training=is_training)):
net, endpoints = mobilenet_v2.mobilenet_base(self._image, conv_defs=CTPN_DEF)
self.variables_to_restore = slim.get_variables_to_restore()
self._act_summaries.append(net)
self._layers['head'] = net
return net
示例7: _mobilenet_v2
# 需要导入模块: from nets.mobilenet import mobilenet_v2 [as 别名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 别名]
def _mobilenet_v2(net,
depth_multiplier,
output_stride,
reuse=None,
scope=None,
final_endpoint=None):
"""Auxiliary function to add support for 'reuse' to mobilenet_v2.
Args:
net: Input tensor of shape [batch_size, height, width, channels].
depth_multiplier: Float multiplier for the depth (number of channels)
for all convolution ops. The value must be greater than zero. Typical
usage will be to set this value in (0, 1) to reduce the number of
parameters or computation cost of the model.
output_stride: An integer that specifies the requested ratio of input to
output spatial resolution. If not None, then we invoke atrous convolution
if necessary to prevent the network from reducing the spatial resolution
of the activation maps. Allowed values are 8 (accurate fully convolutional
mode), 16 (fast fully convolutional mode), 32 (classification mode).
reuse: Reuse model variables.
scope: Optional variable scope.
final_endpoint: The endpoint to construct the network up to.
Returns:
Features extracted by MobileNetv2.
"""
with tf.variable_scope(
scope, 'MobilenetV2', [net], reuse=reuse) as scope:
return mobilenet_v2.mobilenet_base(
net,
conv_defs=mobilenet_v2.V2_DEF,
depth_multiplier=depth_multiplier,
min_depth=8 if depth_multiplier == 1.0 else 1,
divisible_by=8 if depth_multiplier == 1.0 else 1,
final_endpoint=final_endpoint or _MOBILENET_V2_FINAL_ENDPOINT,
output_stride=output_stride,
scope=scope)
# A map from network name to network function.